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A B S T R A C T   

Machine learning offers immense potential as a transformative tool capable of reshaping optical microscopy and 
quantitative modeling in cell biology. Here we exemplify this potential through the development of a generative 
adversarial network (GAN) designed to comprehend and predict cell traction force maps. Empowered by a hybrid 
dataset from traction force microscopy (TFM) and phase-field modeling (PFM), the GAN learns the intricacies of 
the traction force maps of contractile cells in complex chemomechanical environments, with the sole input being 
the phase-contrast images of the cells. The trained GAN accurately predicts collective durotaxis by leveraging the 
learned asymmetric traction force maps, while also unveiling the concealed correlation between substrate 
stiffness and cell contractility arising from mechanotransduction. Remarkably, despite its foundation in epithelial 
cell data, our image-learning algorithm can be extended to other contractile cell types by adjusting a single 
scaling factor. Our approach underscores the potential of synergizing force microscopies and biophysical models 
with image-based learning, thus catalyzing data-driven scientific revelations in cell mechanobiology.   

1. Introduction 

The remarkable ability of cells to perceive, respond, and adapt to 
mechanical forces constitutes the fundamental aspect of cellular 
mechanobiology [1–4]. While much has been understood about the 
intricate interplay between mechanical force transmission and 
biochemical signaling in cell-cell and cell-extracellular matrix in-
teractions, directing long-range multicellular morphogenesis [5–7], 
wound healing [8–10], and cancer metastasis [11,12], an in-depth and 
quantitative understanding of cellular mechanobiology has remained 
obscure due to the lack of reliable, high-throughput tools for quantifying 
cellular forces [13–15]. Traction force microscopy (TFM) has been 
instrumental in measuring the pulling force exerted by focal adhesion 
points [16–18]. The resultant traction force map lays down the foun-
dation for monolayer stress microscopy (MSM) [19,20] and intercellular 
tension microscopy (ITM) [21,22,23]. However, TFM involves imaging 
the traction-induced displacement field of soft substrates inferred by the 
embedded fluorescent beads and calculating the traction force maps 
based on the measured displacement fields and mechanical properties of 

the substrate. Owing to the complex experimental process, the utility of 
TFM is constrained by its low throughput [14,24] and diminishing res-
olution when the stiffness of the extracellular matrix (ECM) exceeds 50 
kPa [12,21,25]. These limitations have significantly impeded the 
advancement of our insights into cellular mechanobiology. 

Machine learning (ML) methodologies have ushered in a new era of 
pattern recognition and image synthesis, achieving unparalleled preci-
sion and efficiency [26]. In materials science, substantial strides have 
been taken in extracting tangible insights from microscopy-driven image 
learning across various multiple length scales. In contrast, less progress 
has been made in cell mechanics, perhaps due to the intrinsic complexity 
of dynamic changes in cell shapes and the cellular forces they generate. 
ML approaches have recently been developed to deduce traction force 
maps from the deformation field of cell-seeding substrates [27,28]. 
Although these methods marked successes to a certain extent, they still 
rely on imaging the traction-induced displacement field of the sub-
strates, i.e., the wrinkled morphology [27] or displacements inferred by 
fluorescent beads [28], which represents the most challenging step in 
classical TFM. Thus, these ML approaches retain inefficiencies and low 
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throughput of the classical TFM. 
Here, we have developed an ML strategy utilizing a generative 

adversarial network (GAN) [29] to learn and predict traction force maps 
of cell monolayers adhering on a flat surface. Our approach diverges 
from classical TFM and deformation-field-based machine-learning ap-
proaches, as it eliminates the need for imaging substrate displacement 
fields. Instead, our ML approach relies solely on cell contours, substrate 
stiffness, and cell type as the inputs, markedly increasing its operational 
efficiency. The GAN model interprets traction force maps as an 
image-to-image translation task, where its interconnected generative 
and discriminative neural networks are cooperatively refined through 
cross-training to reach a converged solution. To address the scarcity of 
experimental TFM essential for training and validating our neural net-
works, we resort to a recently established high-throughput biophysical 
model that produces numerical datasets [21]. Upon training with the 
hybrid experimental and numerical datasets, our neural network dem-
onstrates its versatility by accomplishing a spectrum of tasks. By inte-
grating TFM, biophysical modeling, and advanced image learning 
techniques, our method emphasizes the potential of machine learning to 
unveil complex biomechanical insights from image-derived data in cell 
mechanobiology. 

2. Materials and methods 

2.1. Design of computational experiments 

To complement the TFM measurements, we construct a database of 
cell profiles and corresponding traction forces using continuum simu-
lations (Supplementary Information). To generate a sufficiently exten-
sive dataset that covers the latent space of 2D cell profiles, we developed 
an algorithm to effectively control the regularity and the curvature of 
randomly generated cell geometries. The algorithm uses a simple 
descriptor vector d = (ns,R, rs, σs), where ns denotes the number of 
boundary waves, R the effective radius of the cell, rs the fluctuation for 
the radius of curvature, and σs the Gaussian smoothing parameter. By 
defining a suitable range and discretized interval for the parameter 
space embedded in the four-dimensional vector d, we generated a cell 
profile dataset with 8000 samples, which is utilized as the geometry for 
the continuum model. We developed Python scripts to automate the 
above algorithm for high-throughput simulations. Further information 
is available in the Supplementary Information. 

2.2. Biophysical model of cell traction forces 

The working principle of the classical TFM is to derive traction force 
maps from the displacement field inferred by fluorescent beads 
embedded in a soft, deformable substrate. Since cell traction forces 
displace the beads, detaching cells from the substrate surface eliminates 
the traction forces, allowing the beads to return to their original, un-
deformed positions due to the elastic recovery. Solving an inverse 
elasticity problem relates the measured displacement field to the trac-
tion force map. Both cell traction forces sustained at focal adhesion 
points and viscous forces due to cell migration contribute to the defor-
mation field of the substrate. However, the nonspecific viscous forces are 
comparably small (Supplementary Information) due to low motility of 
the migrating cells [30], as validated by the vanishing traction force in 
regions without focal adhesion points [31]. We further assume that the 
deformation of the substrate at any instant is small such that linear 
elasticity applies. It has been suggested that such small deformation is 
indicative of the cells’ instantaneous configuration and the cell shape 
carries the information about the generated forces [32,33]. The 
geometry-inferred forces are referred to as “configurational forces”, 
which are central to our continuum model [21] and previous models 
[34–36]. Our continuum model capitalizes on this concept, i.e., cell 
shape dictates cell-substrate adhesion forces, to delineate the 

chemomechanical equilibria of a cell monolayer adhering to a soft 
substrate. Indeed, these equilibrium conditions yield focal adhesion 
distributions and traction forces based on the cell substrate stiffness and 
cell shapes (See Supplementary Information), which agree very well 
with TFM. 

We derived the weak form of governing equations (Supplementary 
Information) and implemented the corresponding high-throughput 
simulations by COMSOL Multiphysics package. The input cell geome-
tries are discretized by quadradic triangular elements with appropriate 
element size balancing the computational cost and simulation accuracy. 
The Newton-Raphson algorithm is applied to solve the boundary value 
problem. The output data from COMSOL Multiphysics are postprocessed 
by Python scripts to fit the format requirements of machine learning 
libraries. 

2.3. Traction force microscopy 

We seeded HCT-8 cells onto a soft substrate made of PAA hydrogel at 
a density of 2000 cells/cm2. The stiffness of the substrate was controlled 
by adjusting the concentrations of acrylamide and bis-acrylamide. Prior 
to cell seeding, we coated the top surface of the substrate with fibro-
nectin. To track the displacements induced by cell traction, we 
embedded fluorescent beads within a single subplane of the substrate. 
The seeded HCT-8 cells were then cultured for 24–72 hours until the cell 
monolayer had sufficiently adhered, spread, and grown into multicel-
lular colonies of varying sizes. A laser-scanning confocal fluorescence 
microscope (Olympus FV10i, Japan) was utilized to measure the posi-
tions of the fluorescent beads with cells adhered to the substrate and 
detached from the surface, giving rise to the displacement field. An in-
verse elasticity problem was solved to obtain the cell traction forces. 

2.4. Architecture of neural networks 

We designed the generator as an adapted U-Net [37], which is an 
encoder-decoder architecture with a symmetric input and output 
format. The basic building blocks encoder and decoder of the generator 
consist of several convolution/max pooling operators and a nonlinear 
ReLU activation function. The discriminator shares a similar structure to 
the encoder of the generator. The GAN was implemented based on 
PyTorch [38], a Python-based deep learning library. After grid-search 
optimizing [39], we set the training parameter as follows: 200 epochs 
to stop training, 500 for mini-batch [40] size, ADAM optimizer [41] with 
the learning rate ϵ = 0.0002, hyperparameters β1 = 0.6 and β2 = 0.95. 
The entire training process was deployed on Google Colab. 

3. Results and discussion 

3.1. Generating hybrid datasets from TFM and phase-field modeling 

When seeded on a substrate, migrating cells develop focal adhesion 
points that pull and deform the substrate. The deformation depends on 
the pulling force of the cells as well as the mechanical properties of the 
substrate, i.e., its Young’s modulus and Poisson’s ratio [12]. For 
two-dimensional (2D) TFM that measures the tangential pulling force, i. 
e., traction on flat substrates [16,17], fluorescent beads are embedded 
into a soft substrate (e.g., hydrogels) to track the traction-induced 
displacement through an optical microscope, [16,42] in reference to 
the traction-free condition in which cells are detached off from the 
substrate. The measured displacement field along with the boundary 
conditions furnishes an inverse elasticity problem for traction force 
calculation [12,25]. Using the TFM-reconstructed traction force distri-
bution as a force boundary condition, the stress in the cell body, 
modeled as a thin monolayer, [20,21,43] can be further determined by 
monolayer stress microscopy (MSM). The traction force profile indicates 
focal adhesion distribution [17,44], while the direction of the first 
principal stress of the cell monolayer infers stress-fiber orientations [20, 
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45]. For migrating cells, TFM can be applied at different time points, 
thereby obtaining time-varying traction force maps [46,47]. 

Training an ML model on high dimensional spaces entails a large 
dataset for converged model performance. For each cell type, we have 
no more than 100 experimental traction force maps available up to date, 
with epithelial cells being the most characterized cell type (Fig. S1). 
Preparing a large database (103~104 traction force maps) through 
experimental TFM is undoubtedly very costly, owing to its low- 
throughput characteristic. To meet this challenge, we here generated 
training data by invoking our previously developed continuum model 
[21]. The continuum model assumes that the traction force distribution 
of a cell monolayer is determined by its current configuration [34], and 
imposes the chemomechanical balance laws on the cell-substrate system 
(Supplementary Information). The continuum model simultaneously 
yields focal adhesion distributions, monolayer stress distributions, and 
traction force maps. The predicted traction force maps and monolayer 
stress distributions (Fig. S2) agree very well with TFM and MSM mea-
surements, respectively [21]. 

Based on the continuum model, we built a high-throughput simula-
tion workflow to obtain traction force maps with randomly generated 
cell profiles (Methods, Supplementary Information). The numerical re-
sults constitute the main part of the dataset, in addition to the experi-
mental traction force maps from our own group and others. To 
complement the dataset, we also performed the standard data 
augmentation algorithm (Supplementary Information) on the limited 
experimental data. The final dataset includes ~8000 numerical simu-
lations and ~600 experimental TFM measurements. Considering the 
predominance of the simulation data in the training dataset, we 
explored the impact of the experimental data by training the same GAN 
exclusively on a comparably sized dataset derived solely from simula-
tion data. We evaluated the prediction accuracy by comparing it to both 
simulated and experimental ground truths. The results revealed an in-
crease in the error for experimental data, while the error for the 

simulated data remained nearly unchanged (Fig. S6). This comparative 
study underscores the sensitivity of the GAN to data variety within the 
training set and suggests its potential scalability to extensive experi-
mental datasets. 

3.2. Machine-learning algorithms 

Here we regard traction force as a configurational force [34], 
determined by the (current) cell geometry, substrate stiffness, and cell 
type, which constitute the training data of our ML model. The input cell 
boundary r(θ) can be regularized as a n × n binary geometric indicator 
tensor Ω where the element values take 1 inside the cell boundary or 0 
otherwise, and n varies for different resolutions. The size of the cell 
colony, represented by its average radius R, is given by R =

̅̅̅̅̅̅̅̅̅̅̅̅̅
Scell/π

√
, 

where Scell is the area occupied by the cell monolayer. Correspondingly, 
the traction force vector field T(x) can be discretized as a n × n × 2 
tensor, where the two channels in the third dimension represent the 
traction forces along the in-plane orthogonal directions (x and y di-
rections). Other scalar-valued parameters, such as substrate stiffness, 
cell radius, and cell contractility, are combined into the aggregated 
property tensor C. 

Combining experimental measurements and continuum mechanics 
modeling, we sample the input space of Ω and C. In experiments, T is 
directly measured by TFM. In modeling, we use high-throughput simu-
lations to obtain the traction force field T (Fig. 1A, Supplementary In-
formation). Based on the hybrid database, we propose two ML tasks: I) 
forward problem: given cell geometry Ω and the parameters C, predict 
the traction force map T = f(Ω,C); II) inverse problem: given T and Ω, 
predict a set of parameters C = f̂ (Ω,T), some of which are hidden re-
lationships that are inaccessible to experiments and underlie cellular 
mechanotransduction. 

For task I, we recast the prediction of traction force maps from given 
cell geometry as the image-image translation problem [48] in computer 

Fig. 1. Schematic illustration of the data collection processes and the generative adversarial network (GAN). A. The hybrid data generation processes from 
TFM experiments and high-throughput simulations. B. Top: The architecture of the generator. 3D image tensors are visualized as black cuboids labeled with their 
size, and neural network operators are represented as arrows with different colors. Yellow arrow: skip connection operator which skips middle network blocks and 
directly concatenates the input tensor to its output. Blue arrow: 3 × 3 convolution operator followed by ReLU activation function, which shrinks the first two di-
mensions and expands the third dimension of the input tensor. Red arrow: max pooling operator which is similar to the convolution operator but takes the local 
maximum value. Green arrow: up-convolution operator, which is the inverse operator of convolution. Purple arrow: 1 × 1 convolution operator, which only shrinks 
the third dimension and leaves the first two dimensions unchanged. Bottom: The architecture of the discriminator. The information flow and data structure are 
displayed in a similar way as in the generator. C. The training workflow of the GAN. Solid arrows denote forward propagation and dashed arrows denote 
backpropagation. 
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vision technology. Inspired by the recent progress in image generation 
[49] and style transfer [50], we designed a generative adversarial 
network (GAN) to extract the underlying distribution patterns of trac-
tion force. A GAN consists of a generative (generator) and a discrimi-
native (discriminator) neural network, where the generator and the 
discriminator compete and evolve together to reach a final converged 
image. Upon training, the generator gains an increasing ability to 
generate artificial data that can effectively fool the discriminator. When 
the discriminator can no longer effectively distinguish the difference 
between the ground-truth data and artificial data generated by the 
generator, the cross-training converges. As shown in Fig. 1B-C, our 
generator is adapted from U-Net [37], a classical convolutional neural 
network (CNN) widely applied in biomedical image segmentation tasks, 
and our discriminator is composed of a CNN linked to a fully connected 
neural network. The loss function L(D,G) of the GAN can be formulated 
by the cross entropy formulation, 

L(D,G) = ET∼p(T)[log(D(T) ) ] + EΩ,C∼p(Ω,C)[log(1 − D(G(Ω,C) ) ) ], (1)  

where D and G represent the discriminator and generator, respectively, 
p(T) and p(Ω,C) are distributions of the ground truth and the input data, 
respectively, and E denotes the pixelwise average over the training set. 
Fig. 1C shows the workflow and dataflow of the proposed GAN, where 
the gradients of L(D,G) backpropagate to the discriminator D and the 
generator G, enabling their simultaneous training process: 
maxDminGL(D,G). The discriminator outputs a binary reliability matrix 
indicating the extent of “validity” of local segments of the input images 
(Fig. 1B), while the generator G predicts the traction force map T from 
the given cell geometry Ω and the property tensor C. 

3.3. Learning the traction force maps for epithelial cell colonies 

As shown in Fig. 1, we train the GAN on the hybrid database 
(Methods and Supplementary Information), which includes simulated 
and experimentally measured traction force maps for different cell col-
ony sizes and substrate stiffnesses. Our training data are solely based on 
epithelial cells, as this cell type has the most available datasets of 
experimental traction force maps. The traction force map predicted by 
GAN shows great consistency with both simulation and TFM results for 
different colony sizes (Fig. 2A) and substrate stiffnesses (Fig. 2B). The 
overall profile of predicted traction force magnitude follows a similar 
trend of exponential decay from the cell periphery to its center and 
accumulates in the boundary regions with higher local convex curvature 
(Fig. 2A-B, Fig. S3). The above two features of traction force distribution 
can also be clearly observed from the intermediate feature maps 
(Fig. S4) from the trained generator. Based on the error heatmaps 
(Fig. 2C-D, Fig. S5), we found that the ML model successfully captured 
the distinctive features of the traction force maps, including the local-
ized traction force at the edges of cell monolayer and negligible traction 
within the interior region. Despite the overall trend of our ML predicted 
traction force distribution being consistent with the experimental data, 
we have noted a pronounced relative error in the central region of the 
cell monolayers. The primary factor contributing to this relative error is 
the inherently low traction force at the central region of the monolayers. 
The discrepancies between our ML model predictions and experimental 
data are largely attributed to the divergence of our simulation- 
dominated training dataset from experimental data. In our continuum 
model, which constitutes the bulk of the training set, we assume perfect 
cell-cell adhesion and omit the viscous forces associated with cell 
mobility. Both factors contribute to the variations of traction forces [6, 
51], albeit minor. 

We then define the average pixelwise error by ϵT =

1
n2NΣN

(⃒
⃒
⃒

(
Tp

ijk − Tt
ijk

) ⃒
⃒
⃒/

⃒
⃒
⃒Tt

ijk

⃒
⃒
⃒

)
, where T⋅

ijk denotes the components of the 

ML-predicted (Tp
ijk) or the ground-truth (Tt

ijk) traction force tensor, and N 
is the size of the training set. ϵT was measured separately on the test 

datasets from the continuum simulation and TFM experiments. We 
found that for all cases ϵT < 15% and monotonically increases with the 
colony size R (Fig. 2E), but relatively stable with substrate stiffness Es 

(Fig. 2F). Indeed, given a fixed size n of geometry indicator Ω, a larger R 
corresponds to downsampling and hence decreases resolution. As ex-
pected, the GAN achieves better performance on the simulation test set, 
which constitutes the main part of the training data. 

3.4. Learning the asymmetric traction force distribution that implicates 
durotaxis 

In durotaxis, migrating cells sense and follow environmental stiffness 
gradient [52,53], exhibiting an asymmetrically localized traction force 
distribution at the leading and trailing edges that signifies cell migration 
direction [52,54]. The asymmetric traction force distribution can be 
attributed to the maturation of focal adhesion points from which 
lamellipodia extend forward for cell crawling [55,56]. Here we explore 
if our ML model can predict the traction force localization Tpred(x) =
f(Es(x),Ω ) with given substrate gradient ∇Es(x) and cell geometry Ω 
(Fig. 3A). We sample the input space of Es(x) by 5000 additional sim-
ulations and train the GAN on the Supporting Information set. Fig. 3B 
shows that our ML model captures the asymmetric traction force dis-
tribution of the cell monolayer on a substrate with a stiffness gradient, 
where we specifically chose several relatively symmetrical colony pro-
files (as detailed in Supplementary Information) to minimize the 

Fig. 2. ML prediction on the dependences of traction force maps on 
monolayer size and substrate stiffness. A. Effect of cell colony size. The 
traction force maps for cell colonies with different average radii (54 μm, 107 
μm, and 184 μm) are measured by TFM (bottom row), simulated (middle row) 
by the continuum model, and predicted by the ML model (top row). Scale bar: 
20 μm. B. Effect of substrate stiffness. Colormaps are measured, simulated, and 
ML predicted traction force maps of cell colonies with different substrate 
stiffness (4.5kPa, 20.7kPa, and 47.1kPa), respectively. Scale bar: 20 μm. C-D. 
Spatial heatmaps of the relative error ϵT between GAN prediction and experi-
mental TFM for size effect (C) and substrate stiffness effect (D). E. Spatial 
averaged relative prediction error ϵT of our ML model for different average cell 
colony sizes R in comparison to TFM and continuum modeling. F. Spatial 
averaged relative prediction error ϵT for various substrate stiffnesses. Blue (red) 
error bar denotes the average and standard deviation of ϵT from experiments 
(simulations). 
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influence of cell profiles on the traction force maps. Specifically, traction 
force localization occurs more predominantly on the stiff side of the 
substrate, indicating soft-to-rigid cell migration direction, i.e., dur-
otaxis, consistent with the reported experimental observations [52,54, 
57]. 

It was previously revealed that collective durotaxis arises from long- 
range transmission of intercellular forces, where a multicellular colony 
can sense weak stiffness gradient of the substrate but isolated individual 
cells cannot [52,57]. To see whether our ML model can predict collective 
durotaxis, here we vary substrate stiffness gradient (Fig. 3C) and colony 
size (Fig. 3D) and quantify the traction force difference ΔT = TG − T0, 
where TG and T0 are the predicted traction force maps by our ML model 
for the same cell colony on the substrate with stiffness gradient and 
uniform substrate with the same average stiffness, respectively. In 
Fig. 3C-D, we visualize the horizontal component of ΔT, ΔTx, the same 
direction as the stiffness gradient. Our ML model predicts pronounced 
localization of traction forces at the stiff side with increasing substrate 
stiffness gradient and cell colony size. As lamellipodia extend from the 
localization sites of traction force, our prediction indicates collective 

durotaxis, consistent with previously reported results [52]. 

3.5. Extracting the relation between substrate stiffness and cell 
contractility 

Cells sense and adapt to their mechanical environments by operating 
their contractile machinery at different levels through mechano-
transduction [6,58,59]. Thus, cell contractility and substrate stiffness 
are intimately correlated [60,61], though it remains a challenge to 
quantify such a relationship experimentally. Here we recast our ML task 
to (II), inversely predicting hidden correlations using traction force map 
T: C = f̂ (Ω,T). In the inverse prediction, traction force maps are taken 
as known data, but Es(x) and the cell contractility σA are variables to be 
learned (Fig. 4A). Similarly, by resorting to the continuum simulations, 
we sample the input spaces of T, Ω and the corresponding output σA and 
Es(x), and train a U-Net on this dataset (Supplementary Information). 
Fig. 4B shows full-field stiffness prediction for circular and linear 
patterning modes of substrate stiffness, and the GAN prediction shows 
good accuracy on a wide range of colony shapes and substrate stiffness 

Fig. 3. The extended ML model predicts collective durotaxis. A. Schematic illustration of forward prediction of traction force maps. B. An ML predicted traction 
force map Tpred(x) from forward prediction with spatially varying substrate stiffness, in good comparison to the continuum simulations. C-D. Machine learning 
predicting collective durotaxis effects. The predicted traction force difference ΔTx(x) shows clear localization at the stiff side. The traction force localization becomes 
more pronounced with increasing stiffness gradient (C) and cell colony size (D). 

Fig. 4. ML prediction of the hidden properties of the cell-substrate system. A. Schematic illustration of inverse prediction of cell and substrate properties. B. 
Full-field stiffness prediction results for circular and linear patterning modes of substrate stiffness. C. ML regression of spatially averaged stiffness Es. The data range 
for ground truth is computationally generated from 5kPa to 40kPa. D. The σA − Es relation captured by the ML model (hollow scatters), compared with the ground 
truth generated by simulation (dashed line). 
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patterns (Supplementary Information). Our machine learning prediction 
for Es(x) shows qualitative consistency for the whole range of substrate 
stiffnesses, and successfully captures the spatial variations of substrate 
stiffness. Fig. 4C displays the comparison between the ground truth of 
the substrate modulus Es used in continuum simulations and the pre-
dicted Es,pred. Furthermore, we find that the U-Net can learn the under-
lying nonlinear function between active stress σA and the substrate 
stiffness Es (Fig. 4D). This inverse procedure provides a new route to 
estimate spatially varying properties of the cell-substrate system. 

3.6. Extrapolating the image-learning approach to other cell types 

Contractile cells of different types share similar mechano- 
biochemical feedback loops in traction force generation [65,66], 
despite cell-type dependent contractility σA is different in response to 
the local mechanical environments such as substrate stiffness. From a 
biophysical perspective, cells are powered by actomyosin motors, which 
generate cell contractility [67]. This contractile force is then transmitted 
not only to the extracellular matrix, generating traction, but also to the 
intercellular adherens junctions, generating intercellular tension [6]. 
Cell contractility is closely linked to the self-assembly of the actin 
cytoskeleton, thereby influencing the cell modulus. Cell contractility is 
also correlated to the level of cell spreading: the higher cell contractility, 
the more spreading the cell [68]. Cells can sense and adapt to substrate 
stiffness by varying their level of contractility through mechano-
transduction [69]. Thus, these cellular properties are inherenly related 
to cell contractility. Surface tension may appear to be independent of 
cell contractility. However, from our parameter-sensitivity studies 
(Fig. S7), surface tension does not significantly alter traction force maps. 

From these analyses, cell contractility emerges as the crucial 
parameter for characterizing force distribution with given cell profiles. 
Thus, we rationalize that traction force maps for all the types of con-
tractile cells have similar spatial patterns, but scale with cell-type 
dependent contractility σA. This provides a convenient route to further 
extend our ML model to other contractile cell types. Without any 
retraining, we directly scale the trained GAN to four different cell types 
(fibroblast [62], Hela [63], MDCK [23], and Osteosarcoma [64] cell 
lines) by a constant α and compare the prediction with the reported 
experimental measurements (Fig. 5A-B). The scaling factor α is defined 
as the contractility of the specific cell types relative to that of HCT-8 
epithelial cells. As expected, the predicted traction force maps of the 

GAN, which are only trained on HCT-8 epithelial datasets, have 
reasonably good agreement with the experimental measurements, 
demonstrating the transferrable learning abilities of our ML model. 

4. Conclusions 

In summary, the generative adversarial network (GAN), trained 
using a combination of experimental and numerical datasets, adeptly 
generates a good estimation of traction force maps from just cell con-
tours as inputs. Given that the continuum model involves the coupling of 
multi-field partial differential equations (PDEs), our ML framework 
serves as a surrogate model for these complex PDEs. Beyond its ability to 
predict substrate-stiffness and colony-size dependent traction force 
maps, the neural network uncovers the elusive relationship between 
substrate stiffness and cell contractility, an aspect pivotal to cell 
mechanobiology but often difficult to measure experimentally. 
Remarkably, the ML model, without any alternation to its architecture, 
effectively forecasts asymmetric traction force distribution when cells 
adhere to a substrate with stiffness gradient, demonstrating its capa-
bility to predict collective durotaxis. Additionally, despite being trained 
exclusively on epithelial cell data, our ML model can be seamlessly 
extended to other contractile cell types by adjusting a single scaling 
factor specific to each cell type. Collectively, our work establishes a 
potent digital TFM (DTFM) approach for comprehensively mapping 
traction forces of contractile cell monolayers. 

Despite accurately replicating the biophysical continuum model and 
capturing the overall patterns of experimental traction force distribu-
tions, our ML model still encounters challenges with accurately pin-
pointing local force concentrations and their spatial fluctuations. Part of 
the discrepancy arises from the simplification of the continuum model, 
which does not account for the complexities such as the variability of 
cell-cell adhesion [6] and the viscous force [51] associated with cell 
motility. Additionally, the noise within experimental data intrinsic to 
TFM complicates the task for ML models to precisely map traction 
forces. This presents both challenges and opportunities to improve the 
biophysics model, refine the ML approach, and strengthen their inte-
gration for enhanced model interpretability and generalizability. 

The proposed DTFM can be extended to biologically richer datasets, 
such as linking the focal adhesion distribution and actin cytoskeleton 
organization to the traction force map. Furthermore, the DTFM can be 
adapted to predict the time-evolving traction forces for migrating cells, a 

Fig. 5. Extrapolation of the ML model to other contractile cell types. A-B. Representative prediction results (A) from the GAN, and the comparison (B) between 
experiments. Here α is a scaling factor that accounts for cell-type dependent contractility. Cell geometries and traction force maps of fibroblast [62], Hela [63], MDCK 
[23] and Osteoarcoma [64] are extracted from previous studies. 
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straightforward extension due to the sole requirement of cell contours as 
input. Given that traction force distribution forms the foundation for 
assessing cell monolayer stress and intercellular tension, the established 
DTFM significantly advances the development of digital MSM and IFM, 
culminating in a comprehensive toolset for extra-, intra- and inter- 
cellular force measurements. These digital force microscopy tech-
niques hold immense potential to expedite and refine scientific break-
throughs, particularly concerning the pivotal role of mechanical forces 
in intricate mechanobiochemical processes such as collective cell 
migration [52,70,71], multicellular morphogenesis [5,72], and cancer 
metastasis [11,12,56], among others. 
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