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A functional autophagy pathway is essential for  
BMP9-induced osteogenic differentiation  
of mesenchymal stem cells (MSCs)
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Abstract: Mesenchymal stem cells (MSCs) are capable of differentiating into bone, cartilage and adipose tissues. We 
identified BMP9 as the most potent osteoinductive BMP although detailed mechanism underlying BMP9-regulated 
osteogenesis of MSCs is indeterminate. Emerging evidence indicates that autophagy plays a critical role in regu-
lating bone homeostasis. We investigated the possible role of autophagy in osteogenic differentiation induced by 
BMP9. We showed that BMP9 upregulated the expression of multiple autophagy-related genes in MSCs. Autophagy 
inhibitor chloroquine (CQ) inhibited the osteogenic activity induced by BMP9 in MSCs. While overexpression of 
ATG5 or ATG7 did not enhance osteogenic activity induced by BMP9, silencing Atg5 expression in MSCs effectively 
diminished BMP9 osteogenic signaling activity and blocked the expression of the osteogenic regulator Runx2 and 
the late marker osteopontin induced by BMP9. Stem cell implantation study revealed that silencing Atg5 in MSCs 
profoundly inhibited ectopic bone regeneration and bone matrix mineralization induced by BMP9. Collectively, our 
results strongly suggest a functional autophagy pathway may play an essential role in regulating osteogenic differ-
entiation induced by BMP9 in MSCs. Thus, restoration of dysregulated autophagic activity in MSCs may be exploited 
to treat fracture healing, bone defects or osteoporosis.
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Introduction

Mesenchymal stem cells (MSCs) are multipo-
tent progenitors, and they can differentiate into 
several types of tissues such as bone, carti-
lage, adipose, and muscle [1-6]. While the exact 

mechanisms are not fully understood, osteo-
genic lineage-specific differentiation of MSCs is 
tightly modulated by multiple major signaling 
pathways, such as TGF-β/BMP superfamily 
members, WNT/β-catenin, NOTCH ligands and 
receptors, and FGFs to name a few [3, 7-18]. 
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Among those osteogenic regulators, BMPs rep-
resent a group of the most potent osteogenic 
factors [19-21].

BMPs are members of TGF-β superfamily [3, 
19, 20, 22], and the 14 types of BMPs exist in 
humans and rodents [19, 20, 23, 24]. We car-
ried out a systematic study, analyzed the osteo-
genic capability of the 14 human BMPs, and 
identified the least known BMP9 as the stron-
gest osteogenic BMP in MSCs [19, 21, 25-28]. 
BMP9, unlike BMP2 and BMP7, is refractory to 
the inhibitory effect exerted by the potent 
antagonist noggin [29]. We also showed that 
TGF-β/BMP-1R ALK1 and ALK2 are critical for 
transmitting BMP9 osteogenic signaling [30] 
and subsequently regulating downstream tar-
get genes in MSCs [31-38]. We further demon-
strated that noncoding RNAs may play an 
important role in BMP9-initiated osteogenic 
signaling [39-41], while we and others revealed 
that BMP9 can cross-talk with many pathways 
in regulating osteogenic differentiation [16, 
35-37, 42-49]. But, the detailed mechanisms 
underlying BMP9-induced osteogenesis remain 
indeterminate.

Emerging evidence indicates that autophagy 
may play an important role in bone homeosta-
sis [50-52]. As an evolutionarily conserved 
cytoplasmic membrane-trafficking pathway for 
shuttling organelles and/or proteins to lyso-
somes for degradation and recycling, autopha-
gy is considered one of the primary catabolic 
pathways, in which cells are digested to recover 
nutrients and energy [50, 53-55]. Autophagy is 
indispensable for cell homeostasis and stress 
responses [52]. Multiple proteins involved in 
autophagy activities, such as autophagy-relat-
ed (ATG) proteins, are critical to the survival and 
differentiation of osteoblasts, osteocytes, and 
osteoclasts [50-52]. As the paradoxical func-
tions of autophagy in maintaining cell homeo-
stasis and stress responses demand a delicate 
and fine-tuned regulation of autophagic activi-
ty, dysregulated autophagic activity may disturb 
the balance between bone formation and bone 
resorption, leading to the development and/or 
progression of bone disorders, such as os- 
teoporosis and Paget’s disease [50-52, 55]. 
Nonetheless, since autophagy is known to play 
paradoxical roles in many cellular processes, 
the exact mechanisms underlying autophagy-
regulated bone homeostasis remain to be thor-
oughly elucidated. 

In this study, we studied whether or not the 
autophagy pathway played any role in osteo-
genic differentiation induced by BMP9 in MSCs. 
We showed that BMP9 effectively upregulated 
the expression of multiple autophagy-related 
genes (ATGs) in MSCs. Autophagy inhibitor chlo-
roquine (CQ) was shown to significantly inhi- 
bit the osteogenic activity induced by BMP9 in 
MSCs. While an overexpression of ATG5 or 
ATG7 did not enhance BMP9-induced osteo-
genic activity, silencing Atg5 in MSCs effective-
ly diminished BMP9 osteogenic signaling activ-
ity and blocked the expression of the osteogen-
ic regulator Runx2 and the late marker osteo-
pontin induced by BMP9. In vivo stem cell 
implantation experiments revealed that silenc-
ing Atg5 in MSCs profoundly inhibited ectopic 
bone formation and bone matrix mineralization 
induced by BMP9. Collectively, these findings 
suggest that effective osteogenesis induced by 
BMP9 may require functional autophagy path-
way in MSCs. Therefore, restoration of dysre- 
gulated autophagic activity in MSCs may be 
explored to treat bone fracture healing, bone 
defects, or osteoporosis.

Material and methods

Chemicals, cell culture and medium

Mouse imBMSCs are reversibly immortalized 
mouse bone marrow stromal cells previously 
characterized [56]. HEK-293 cells were obtain- 
ed from ATCC, while 293pTP and RAPA cells 
were derived from HEK-293 cells as described 
[57, 58]. The above cell lines were cultured in 
DMEM containing 10% FBS, containing penicil-
lin (100 U/ml) and streptomycin (100 µg/ml) at 
37°C in 5% CO2 as described [59-63]. All other 
chemicals were purchased from Sigma-Aldrich 
or Thermo Fisher Scientific.

Generation and amplification of adenoviral 
vectors Ad-BMP9, Ad-ATG5, Ad-ATG7, AdR-
simAtg5 and Ad-GFP

We constructed recombinant adenoviruses us- 
ing the AdEasy system [64-66]. Specifically, the 
human BMP9, human ATG5, and human ATG7 
coding regions were amplified by Hi-Fi PCR, 
cloned into an adenoviral shuttle vector to pro-
duce recombinant adenovirus plasmids and 
subsequently adenoviruses in packaging cell 
lines such as 293pTP and RAPA cells [57, 58], 
yielding Ad-BMP9, Ad-ATG5 and Ad-ATG7, all of 
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which also co-express GFP as a tracking 
marker. 

For the construction of silencing Atg5 adenovi-
ral vector, three siRNAs silencing the coding 
region of mouse Atg5 were designed by using 
Invitrogen’s BLOCK-IT RNAi Designer program, 
simultaneously assembled into our recently-
developed FAMSi vector system [67], which 
was optimized on the basis of our previously-
established siRNA expression systems [68-71], 
and subsequently subcloned into our home-
made adenoviral vector as described [17, 37, 
72, 73]. Recombinant adenovirus AdR-simAtg5 
was generated in 293pTP or RAPA cells. The 
AdR-simAtg5 co-expresses RFP as a tracking 
marker. Ad-GFP was used as a control virus as 
described [70, 74-77]. Polybrene (5 µg/ml) was 
included in all adenoviral infections to enhan- 
ce adenoviral infection efficiency as described 
[78]. 

RNA purification & touchdown quantitative 
PCR (TqPCR)

Total RNA was extracted with TRIZOL Reagent 
and used for reverse transcription reactions 
using random 6 mers and M-MuLV RT (New 
England Biolabs, Ipswich, MA). RT products 
were used as TqPCR templates. TqPCR primers 
were designed by using Primer3 Plus program 
(Supplementary Table 1). TqPCR analysis was 
performed as described [24, 45, 79-82]. Briefly, 
SYBR Green (Bimake, Houston, TX) qPCR was 
set up with the following cycling parameters: 
95°C × 3’ for 1 cycle; 95°C × 20”, 66°C × 10” 
per cycle, then -3°C each cycle for 4 cycles; fol-
lowed by 95°C × 10”, 55°C × 15”, and 70°C × 
1’ for 40 cycles. All reactions were normalized 
with the expression level of reference gene 
Gapdh. The 2-ΔΔCt method was used to deter-
mine relative gene expression. 

Determination of alkaline phosphatase (ALP) 
activity

Different adenoviruses were used to infect  
subconfluent imBMSCs. At the indicated time 
points (usually 2, 4, 6 days after infection), the 
Great Escape SEAP Chemiluminescence Assay 
was used to quantitatively assess ALP activi-
ties as previously described [37, 83-85]. Each 
assay condition was conducted in triplicate. 

Qualitative ALP activity was assessed with his-
tochemical staining 4 days and 6 days after 

infection. Briefly, the imBMSCs were fixed with 
glutaraldehyde, and stained with a mixture of 
naphthol AS-MX phosphate and Fast Blue BB 
salt as described [25, 26, 33, 86, 87]. The 
stains were washed with PBS and recorded. 
Each staining condition was conducted in tri- 
plicate. 

Alizarin Red S stain

Subconfluent imBMSCs were plated in 24-well 
culture plates, infected with appropriate adeno-
viral vectors, and cultured in complete DMEM 
with ascorbic acid (50 µg/ml) and β-glycero- 
phosphate (10 mM). At the endpoints of assays, 
the cells were fixed and stained with Alizarin 
Red S to visualize mineral nodules as previous-
ly reported [25, 88, 89]. The stained calcium 
mineral nodules were recorded. Alizarin Red S 
stains were quantified by dissolving in 10% ace-
tic acid and measuring absorbance at 405 nm. 
Each staining assay condition was conducted 
in triplicate.

Ectopic bone formation

The use and care of animals was approved by 
the Institutional Animal Care and Use Com- 
mittee. Subcutaneous injection procedure was 
conducted as described [83, 88, 90-96]. Ex- 
perimentally, subconfluent imBMSCs were co-
infected with appropriate combinations of ade-
noviruses for 36 h, harvested, resuspended in 
sterile PBS/PPCN scaffold material mix (~5 × 
106 cells in 50 µl/injection), and subcutane-
ously injected into the flanks of nude mice 
(Envigo; n=4/group, female, 6-wk-old). At 5 wk 
after injection, the animals were euthanized for 
harvesting the bony masses. 

MicroCT (μCT) imaging and data analysis 

Retrieved bony masses were fixed in 10% PBS-
buffered formalin and imaged by using the μCT 
component of the GE triumph trimodality imag-
ing system. The acquired imaging data were 
analyzed using Amira 6.0 (Visage Imaging, Inc.) 
as previously described [35, 49, 97, 98]. 

Histologic evaluation and Masson’s trichrome 
staining 

The above fixed masses were subjected to 
decalcification and paraffin embedding. 5 µm 
sections were used for H&E histologic evalua-
tion and Masson’s trichrome staining as previ-
ously reported [96, 99-103]. 
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Statistical analysis 

We performed all quantitative studies in tripli-
cate. The statistical comparison of the means 
between two groups was determined by Stu- 
dent’s t test. The P<0.05 was cutoff for statisti-
cal significance.

Results

BMP9 can upregulate the expression of mul-
tiple autophagy genes in MSCs

To determine whether or not autophagy plays 
any role in osteogenic differentiation induced 
by BMP9 in MSCs, we first analyzed if BMP9 
would affect the expression of 13 of the im- 
portant genes in the autophagy pathway. When 
subconfluent imBMSCs were transduced with 

Even though chloroquine (CQ) has been widely 
used as an autophagy inhibitor in cancer cells, 
it was not well established what the optimal 
non-lethal concentrations of CQ are for MSCs. 
When imBMSCs were treated with a broad 
range of CQ (0 to 80 µM), we found that 40 µM 
CQ caused drastic cytotoxicity and cell death, 
while imBMSC cells were apparently healthy 
when CQ concentration was lower than 20 µM 
(Supplementary Figure 1A). Furthermore, no 
significant cytotoxicity was observed in the 
imBMSC cells that were infected with Ad-BMP9 
or Ad-GFP, and/or treated with up to 10 µM CQ 
(Supplementary Figure 1Ba, 1Bb). Thus, we 
chose the maximal concentration of 10 µM CQ 
in our experiments. 

When imBMSCs were infected with Ad-BMP9 or 
Ad-GFP, and treated with different concentra-

Figure 1. BMP9 upregulates the expression of multiple autophagy genes 
in MSCs. Subconfluent MSCs were infected with Ad-BMP9 or Ad-GFP. Total 
RNA was isolated at 1 day (A), 3 days (B) and 5 days (C) after infection, and 
subjected to RT-qPCR analysis of the expression of major regulators of the 
autophagy pathway. Relative expression was calculated as fold changes over 
Ad-GFP infected cells (dotted lines). “*” P<0.05, “**” P<0.01, compared with 
that of the Ad-GFP group for respective genes.

Ad-BMP9 or Ad-GFP control 
adenovirus, eight of the test-
ed 13 genes were up-regu- 
lated by BMP9 at 24 h post 
infection (Figure 1A), while 
BMP9 up-regulated all 13 
genes at 72 h after infection 
(Figure 1B). Even at 5 days 
after infection, BMP9 up-reg-
ulated the expression of 12 
of the 13 tested genes in the 
autophagy pathway (Figure 
1C). Similar results were ob- 
tained in other types of MSCs 
stimulated with BMP9 (data 
not shown). Our results dem-
onstrate that BMP9 can up-
regulate multiple autophagy 
genes in MSCs, especially 
Atg3, Atg5, Atg8, Atg9a, Atg- 
10, Atg14, Atg101, Fip200, 
and Ulk, suggesting that au- 
tophagy may play an impor-
tant role in osteogenic differ-
entiation induced by BMP9 in 
MSCs. 

Autophagy blockade effec-
tively inhibits ALP activity 
and matrix mineralization 
induced by BMP9 in MSCs

We next tested the effect of 
autophagy inhibition on os- 
teogenic differentiation stim-
ulated by BMP9 in MSCs. 
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Figure 2. Autophagy blockade leads to the inhibition of BMP9-induced ALP activity and matrix mineralization in 
MSCs. (A, B) Autophagy inhibitor chloroquine (CQ) suppresses BMP9-induced ALP activity. Subconfluent MSCs were 
infected with Ad-BMP9 or Ad-GFP, and treated with the indicated concentrations of CQ. At 4 days and 6 days after 
infection, ALP activity was stained histochemically and representative results are shown (A). Quantitative ALP assay 
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tions of CQ, we found that ALP activity induced 
by BMP9 was inhibited in a dose-dependent 
manner at both day 4 and day 6, respectively 
(Figure 2A). Quantitative ALP activity analysis 
also confirmed that ALP activity stimulated by 
BMP9 was significantly suppressed by CQ at 2, 
4, and 6 days after infection in a dose-depen-
dent fashion (Figure 2A). Alizarin Red S stain- 
ing assay indicates that matrix mineralization 
induced by BMP9 was effectively inhibited by 
CQ in a dose-dependent fashion at both day 10 
and day 17, respectively (Figure 2Ca, 2Cb), 
which was further confirmed by the quantita- 
tive measurements of the stained mineral nod-
ules (Figure 2D). Collectively, these findings 
suggest autophagy blockade may significantly 
diminish BMP9-induced osteogenesis of MSCs.

Silencing Atg5 expression effectively blunts 
the ALP activity and matrix mineralization in-
duced by BMP9 in MSCs

We further analyzed the effect of overexpres-
sion or silencing of autophagy genes (e.g., Atg5 
and Atg7) on osteogenic differentiation induced 
by BMP9 in MSCs. In order to effectively overex-
press autophagy genes, we engineered recom-
binant adenoviral vectors Ad-ATG5 and Ad-ATG7, 
both of which were shown to effectively trans-
duce imBMSC cells, and could be used to co-
infect imBMSC cells with Ad-BMP9 (Supple- 
mentary Figure 2A, 2B). For silencing Atg5 
expression in imBMSCs, we also constructed 
AdR-simAtg5 adenoviral vector, and showed 
the imBMSC cells were readily transduced by 
AdR-simAtg5 alone, or with Ad-BMP9 (Supple- 
mentary Figure 2C). We further demonstrated 
that Atg5 expression in imBMSC cells was 
effectively silenced by AdR-simAtg5 adenoviral 
vector (Supplementary Figure 2D). 

When imBMSCs were co-infected with Ad-BMP9 
and Ad-ATG5, we found that ALP activity stimu-
lated by BMP9 was not significantly enhanced 
by ATG5 overexpression at the tested time 
points (Figure 3Aa, 3Ab). Similarly, overexpres-
sion of ATG7 in imBMSC cells did not signifi-
cantly impact BMP9-stimulated ALP activity 
(Figure 3Ba, 3Bb). We further investigated the 

effect of ATG5 overexpression on late stage of 
osteogenesis induced by BMP9 and found that 
exogenous expression of ATG5 in imBMSCs did 
not significantly enhance matrix mineralization 
induced by BMP9 as determined by Alizarin 
Red S staining (Figure 3Ca, 3Bb). Similar results 
were obtained in the imBMSC cells co-infected 
with Ad-ATG7 and Ad-BMP9, and no increase in 
Alizarin Red S staining was observed (Figure 
3Da, 3Db). These results indicate that exoge-
nous expression of autophagy genes seeming- 
ly does not affect osteogenic differentiation 
induced by BMP9 in MSCs.

However, silencing Atg5 in imBMSC cells effec-
tively diminished ALP activity induced by BMP9 
at 4 days and 6 days after infection (Figure 
4Aa, 4Ab). Quantitative analysis confirmed that 
ALP activity stimulated by BMP9 was inhibited 
in the AdR-simAtg5 infected cells at 2, 4, and 6 
days after infection (Figure 4B). Accordingly, 
silencing Atg5 led to a marked decrease in 
Alizarin Red S staining induced by BMP9 at 10 
days and 17 days after infection (Figure 4Ca, 
4Cb), which was readily supported by the quan-
titative analysis of the stained mineral nodules 
(Figure 4Cc). Collectively, these findings sug-
gest that a functional autophagy pathway may 
be critical to osteogenic differentiation induced 
by BMP9 in MSCs, consistent with the inhibito-
ry effect exerted by CQ blockade as shown in 
Figure 2. 

To elucidate potential mechanism underlying 
the effect of overexpressing or silencing au- 
tophagy genes in MSCs, we co-infected imBM-
SCs with Ad-BMP9 and/or Ad-ATG5, Ad-ATG7, or 
AdR-simAtg5 for 3 days, and analyzed the 
expression of the master osteogenic regulator 
Runx2 and the late osteogenic marker osteo-
pontin (Opn) by qPCR. We found that overex-
pression of ATG5 or ATG7 did not significantly 
affect expression of Runx2 and Opn up-regulat-
ed by BMP9 (Figure 5A, 5B). However, silencing 
Atg5 in imBMSC cells significantly diminished 
the expression of Runx2 and Opn induced by 
BMP9 (Figure 5C). Taken together, the above 
findings are consistent with the hypothesis that 
functional autophagy pathway plays an impor-

was also carried out at 2, 4, and 6 days after infection (B). “*” P<0.05, “**” P<0.01, compared with that of the 
“Ad-BMP9+0 µM CQ” group. (C, D) Autophagy inhibitor chloroquine (CQ) diminishes BMP9-induced matrix mineral-
ization. Subconfluent MSCs were infected with Ad-BMP9 or Ad-GFP, and treated with the indicated concentrations 
of CQ. At 10 days and 17 days after infection, the cells were fixed and stained with Alizarin Red staining, and repre-
sentative results are shown (C). The Alizarin Red stains were dissolved and quantitatively measured (D). “*” P<0.05, 
“**” P<0.01, compared with that of the “Ad-BMP9+0 µM CQ” group.



Autophagy participates in BMP9-induced osteogenesis

4239 Am J Transl Res 2021;13(5):4233-4250

tant role in osteogenic differentiation initiated 
by BMP9 in MSCs. 

Silencing Atg5 inhibits ectopic bone formation 
induced by BMP9 in MSCs

Lastly, we examined the effect of overexpress-
ing or silencing autophagy genes on in vivo 

bone formation induced by BMP9. When imBM-
SCs were co-infected with combinations of 
Ad-GFP or Ad-BMP9, with Ad-ATG5, Ad-ATG7, or 
AdR-simAtg5, and implanted into the flanks of 
nude mice for 5 weeks. No retrievable masses 
were found in the Ad-GFP control, Ad-ATG5 only, 
Ad-ATG7 only, and AdR-simAtg5 only groups. 
Apparent masses were readily retrieved from 

Figure 3. Exogenous expression of ATG5 or ATG7 does not affect BMP9-induced osteogenic differentiation in MSCs. 
(A, B) Exogenous expression of ATG5 or ATG7 does not affect BMP9-induced ALP activity. Subconfluent MSCs were 
infected with Ad-GFP, Ad-BMP9, and/or Ad-ATG5 (A), and/or Ad-ATG7 (B). ALP activity was qualitatively assessed with 
histochemical staining at 4 and 6 days after infection (a), or was quantitatively determined at 2, 4, and 6 days after 
infection (b). Representative results are shown. (C, D) Exogenous expression of ATG5 or ATG7 does not affect BMP9-
induced matrix mineralization. Subconfluent MSCs were infected with Ad-GFP, Ad-BMP9, and/or Ad-ATG5 (C), and/
or Ad-ATG7 (D). Alizarin Red staining was carried out at 10 and 17 days after infection (a), followed by dissolving the 
stains for quantitative absorbance measurement (b). Representative results are shown. 
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Figure 4. Silencing ATG5 significantly diminishes BMP9-induced ALP activity and matrix mineralization in MSCs. (A, 
B) Silencing Atg5 inhibits BMP9-induced ALP activity. Subconfluent MSCs were infected with Ad-GFP, Ad-BMP9, and/
or AdR-simAtg5. ALP activity was qualitatively assessed with histochemical staining at 4 days (a) and 6 days (b) after 
infection, or was quantitatively determined at 2, 4, and 6 days after infection (B). Representative results are shown. 
“**” P<0.01, compared with that of the Ad-BMP9 group. (C) Silencing Atg5 inhibits BMP9-induced matrix mineral-
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BMP9+ATG5, BMP9+ATG7, BMP9 only, and 
BMP9+simAtg5 groups, where the average 
gross sizes (Figure 6Aa) and micro-CT 3D 
reconstructed images (Figure 6Ab) indicated 
that the bony masses retrieved from the 
BMP9+simAtg5 group were noticeably smaller 
than that from the BMP9 alone group, although 
masses from the ATG5 or ATG7 overexpression 
group had roughly similar sizes to that of the 
BMP9 alone group (Figure 6Aa, 6Ab). The 
micro-CT data were uantitatively analyzed and 
confirmed that silencing Atg5 inhibited the 
average bone volume of the ectopic bone 
masses induced by BMP9 (Figure 6Ac).

Histologic analysis revealed that the mass- 
es retrieved from BMP9 alone, BMP9+ATG5, 

the most potent osteoinductive BMPs [19, 21, 
25, 26, 28]. Furthermore, we demonstrated 
that BMP9 also induces adipogenic and chon-
drogenic differentiation in MSCs [19, 21, 28, 
86]. Subsequently, we demonstrated that 
BMP9 binds to ALK1/2 type I receptors and 
regulates a panel of downstream target genes 
and noncoding RNAs, as well as cross-talking 
with several signaling pathways in MSCs [16, 
18, 20, 31-37, 40, 41, 43-45, 104, 105]. 
Nonetheless, the exact mechanism underlying 
BMP9-regulated osteogenic differentiation of 
MSCs remains to be fully understood. 

Emerging evidence indicates that autophagy 
may play critical roles in cell homeostasis and 
stress responses, including bone homeostasis 

ization. Subconfluent MSCs were infected with Ad-GFP, Ad-BMP9, and/or AdR-simAtg5. Alizarin Red staining was car-
ried out at 10 days (a) and 17 days (b) after infection, followed by dissolving the stains for quantitative absorbance 
measurement (c). Representative results are shown. “**” P<0.01, compared with that of the Ad-BMP9 group.

Figure 5. Silencing Atg5 expression inhibits BMP9-induced expression of 
Runx2 and osteopontin (Opn) in MSCs. Subconfluent MSCs were infected with 
Ad-GFP, Ad-BMP9, and/or Ad-ATG5 (A), Ad-ATG7 (B), or AdR-simAtg5 (C). Total 
RNA was isolated at 72 h after infection and subjected to RT-qPCR analysis of 
Runx2 and Opn expression. “**” P<0.01, compared with that of the Ad-BMP9 
group.

BMP9+ATG7 groups exhibit-
ed similar bone histology wi- 
th abundance of mature tra-
becular bone, whereas the 
BMP9+simAtg5 group lack- 
ed significant trabecular bo- 
ne structure and only display 
ed immature osteoid matrix-
like structure (Figure 6Ba). 
Trichrome staining also re- 
vealed that the masses re- 
trieved from the BMP9 al- 
one, BMP9+ATG5, BMP9+ 
ATG7 groups contained ab- 
undant highly mineralized 
mature bone matrix, while 
the BMP9+simAtg5 group 
only exhibited immature os- 
teoid matrix structure (Figure 
6Bb). These findings further 
validate the in vitro results 
and strongly suggest that a 
functional autophagy path-
way may play an essential 
role in mediating osteoge- 
nesis induced by BMP9 in 
MSCs. 

Discussion

Through a systematic analy-
sis of the osteogenic activi-
ties of 14 human BMPs, we 
identified BMP9 as one of 
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[50-54]. In this study, we investigated whether 
or not autophagy plays any role in BMP9-
induced osteogenic signaling. We found that 
autophagy blockade with chloroquine or silenc-
ing Atg5 effectively blocked BMP9-induced 
osteogenic differentiation of MSCs in vitro and 
in vivo, whereas overexpression of ATG5 or 
ATG7 did not enhance BMP9-induced osteo-
genic differentiation in MSCs. Our findings sug-
gest that the basal autophagic activity may be 
sufficient for normal BMP9 osteogenic signal-
ing, but a blockade of autophagic activity may 
effectively blunt BMP9 osteogenic signaling in 
MSCs. These findings should be consistent 
with the fact that paradoxical roles of autopha-
gy in maintaining cell homeostasis and stress 
responses mandate a balanced autophagic 
activity in MSCs.

It was reported that autophagosomes were 
shown to accumulate in the stem state of MSCs 
and deliver them to lysosomes once differenti-

ation was initiated [106], and more differenti-
ated osteocytes exhibited higher levels of au- 
tophagic flux [107]. Accordingly, osteocyte-spe-
cific suppression of autophagy was shown to 
mimic the skeletal aging phenotype [108]. Mice 
lacking Atg7 in osteoblasts had low bone mass 
and fractures, and were associated with reduc-
tions of both osteoclast and osteoblast num-
bers [109], further confirming that autophagy  
in osteoblasts may contribute to skeletal 
homeostasis. However, inhibition of autophagy 
in osteocytes did not reverse the glucocorti-
coids’ adverse impact on cortical bone [110]. It 
was reported that Atg5 and Atg7 in mononuc- 
lear osteoclast progenitors were required for 
appropriate localization of lysosomes within 
the actin ring, as well as for the pit formation 
during bone resorption, although they were not 
required for osteoclastogenesis and osteoclast 
maturation [111]. Furthermore, cartilage-spe-
cific knockout of Atg7 in mice led to reduced 
chondrocyte proliferation and differentiation, 

Figure 6. Silencing ATG5 inhibits BMP9-induced ectopic bone formation from MSCs. (A) Subconfluent MSCs were 
infected with Ad-GFP, Ad-BMP9, and/or Ad-ATG5, Ad-ATG7, or AdR-simAtg5 for 30 h, and collected for subcutaneous 
injection into the flanks of athymic nude mice. At 5 weeks, bony masses were harvested (Aa) and subjected to mi-
croCT imaging (Ab). No mass was recovered from the Ad-GFP control, Ad-ATG5 only, Ad-ATG7 only, and AdR-simAtg5 
only groups. Representative images are shown. Micro-CT imaging data were used to calculate the average bone 
volume (Ac). “**” P<0.01, compared with that of the Ad-BMP9 group. (B) The retrieved masses were decalcified, 
paraffin-embedded, and subjected to H, E staining (a) and trichrome staining (b). Representative images are shown.   
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and increased chondrocyte apoptosis [112], 
consistent with the fact that autophagy is gen-
erally considered to be an important cell sur-
vival pathway. 

In summary, we investigated if autophagy plays 
any role in BMP9-induced osteogenic signaling 
in MSCs. We found that autophagy blockade 
with chloroquine or silencing Atg5 expression 
significantly diminished BMP9-induced osteo-
genic differentiation of MSCs both in vitro and 
in vivo, whereas overexpression of ATG5 or 
ATG7 did not enhance BMP9-induced osteo-
genic differentiation under the same condi-
tions. Collectively, our findings strongly suggest 
that a functional autophagy pathway may play 
an essential role in mediating BMP9-induced 
osteogenesis of MSCs. Thus, it is conceivable 
that restoration of dysregulated autophagic 
activity in MSCs through a controlled delivery of 
BMP9 may be explored as a therapeutic strat-
egy to treat bone fracture healing, bone defects, 
or osteoporosis.
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Supplementary Table 1. List of oligonucleotides used in the study
Gene Sequence Accession No. Use
Ulk1 TGGTGTCACTGCAGAGCG NM_009469.3 qPCR

CCGTGAGAGTGTGCTGCA
Fip200 AGGACCGAGCTCGTTTGC NM_009826

TAGAGCTCTGGGGCTGCA
Atg3 GCCCTATCGCTGCTCCAG NM_026402.3

CCCCTGTAGCCCATTGCC
Atg5 GGACAACGAGGCGTGACA NM_053069.6

GAGGCTGCAGTGGTCCTG
Atg6 GTGGGGAAAGGACACCGG NM_019584

CTCCACGTCGCACACAGT
Atg7 CGGCAGTTTCCAGTCCGT NM_028835.4

ATCCTCGGACCCATGCCT
Atg8 CGCCGGAGTCAGATCGTC NM_026160.5

ATCTTGGTGGGGTGCTGC
Atg9a CGCTGGCTCTATCCTGGC NM_026160.5

CGGGGCAGAACACCATGT
Atg9b TGCCCCTCGCACAAGAAG NM_001002897.3

GTTGAGGGTGTGGTCGGG
Atg10 GCGATGGCTGGGAATGGA NM_025770.3

TCACTTCTGCCACCGCTG
Atg12 TCCTCGGCTGCAGTTTCG NM_026217.3

GTTCGCTCCACAGCCCAT
Atg14 TACACTATCAGCGCCGCG NM_172599.4

TCGCCACAGAACTCGCTG
Atg101 CAGGTGGTGATGGCCTGG NM_026566.2

CCAAGGCTACCACGTGCA
Runx2 CCGGTCTCCTTCCAGGAT NM_001146038

GGGAACTGCTGTGGCTTC
Opn CCTCCCGGTGAAAGTGAC NM_001204201.1

CTGTGGCGCAAGGAGATT
Gapdh ACCCAGAAGACTGTGGATGG NM_008084.3

CACATTGGGGGTAGGAACAC
ATG5 accaccatgggcATGACAGATGACAAAGATGTGCTTC NM_004849.3 over expression

TCAATCTGTTGGCTGTGGGATGATAC
ATG7 accaccATGGCGGCAGCTACGGGGGATCCTGG NM_001136031.2

TCAGATGGTCTCATCATCGCTCATG
Atg5 aaaaaGCTTCGAGATGTGTGGTTTtttttAGAGTGGTCT NM_053069 siRNAs

GgtGGTCTCGggcaaaaaaGCTTCGAGATGTGTGGTTT
aaaaaTAAAGTGAGCCTCAACCGCtttttTTCGTCCTTTC
ggtGGTCTCGcgttAaaaaaTAAAGTGAGCCTCAACCGC
aaaaaATGAGTTTCCGGTTGATGGtttttTTCGTCCTTT
ggtGGTCTCGgccaaaaaaATGAGTTTCCGGTTGATGG
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Supplementary Figure 1. Determination of sub-lethal and optimal concentrations of chloroquine (CQ) in MSCs. (A) 
Subconlfuent MSCs were treated with the indicated concentrations of CQ and photographed at 72 h after treat-
ment. Representative images are shown. (B) Subconfluent MSCs were infected with Ad-GFP or Ad-BMP9 and treated 
with CQ at the indicated concentrations. Bright field images (a) and GFP signal (b) were recorded at 48 h post infec-
tion/treatment. Representative images are shown.
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Supplementary Figure 2. Characterization of the recombinant adenoviral vectors used in the study. (A, B) Efficient 
co-transduction of MSCs using BMP and Ad-ATG5 or Ad-ATG7 viral vectors. Subconfluent MSCs were infected with 
Ad-GFP, Ad-BMP9 and/or Ad-ATG5 (A) or Ad-ATG7 (B), and GFP signal was recorded at 48 h after infection. Represen-
tative images are shown. (C) Co-infection efficiency of AdR-simAtg5. Subconfluent MSCs were infected with Ad-GFP, 
Ad-BMP9 and/or AdR-simAtg5, and GFP or RFP signal was recorded at 48 h after infection. Representative images 
are shown. (D) Silencing efficiency of AdR-simAtg5. Subconfluent MSCs were infected with Ad-GFP, or AdR-simAtg5. 
At 72 h after infection, total RNA was isolated and subjected to RT-PCR analysis of Atg5 expression. “**” P<0.01, 
compared with that of the Ad-GFP control group. 


