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I am truly delighted to write the foreword for Natural and 
Synthetic Biomedical Polymers edited by well-established 
leaders and pioneers in the field, Professors Dr. Kumbar, 
Dr. Laurencin, and Dr. Deng. This book should prove 
extremely useful as a reference source for all those working 
in the fields of polymer chemistry and physics, biomaterial 
science, tissue engineering, drug delivery, and regenerative 
medicine. Polymeric materials are routinely used in clinical 
applications, ranging from surgical sutures to drug-eluting 
devices to implants. In particular, implants and drug delivery 
devices fabricated using biodegradable polymers provide the 
significant advantage of being degraded and/or resorbed after 
they have served their function. Yet, biomedical polymers 
must satisfy several design criteria, including physical, 
chemical, biomechanical, biological, and degradation 
properties when serving as an active implant material. 
Several natural and synthetic degradable polymers have been 
developed and are used clinically today. However, a wide 
range of new polymers, as well as modifications to existing 
polymers, are constantly being developed and applied 
to meet on-going and evolving challenges in biomedical 
applications. For example, polymeric nanostructures, 
implants, scaffolds, and drug delivery devices are allowing 
unprecedented manipulation of cell-biomaterial interactions, 
promotion of tissue regeneration, targeting of therapies, and 
combined diagnostic and imaging modalities.

This timely book provides a well-rounded and articulate 
summary of the present status of natural and synthetic 
biomedical polymers, their structure and property rela-
tionships, and their biomedical applications including  
regenerative engineering and drug delivery. Polymers that 
are both synthetic and natural in origin have been widely 
used as biomaterials for a variety of biomedical applications 
and greatly impacted the advancement of modern medicine. 
In this regard, 23 concise and comprehensive chapters are 
prepared by experts in their fields from different parts of 
the world. The chapters encompass numerous topics that 
appear prominently in the modern biomaterials literature 
and cover a wide range of traditional synthetic, natural, and 
semi-synthetic polymers and their applications. In my opin-
ion, this book presents an excellent overview of the sub-
ject that will appeal to a broad audience and will serve as 
a valuable resource to those working in the fields of poly-
mer science, tissue engineering, regenerative medicine, or 
drug delivery. I believe that this textbook will be a welcome 
addition to personal collections, libraries, and classrooms 
throughout the world.

Kristi S. Anseth
Professor, Department of Chemical 

 and Biological Engineering,  
University of Colorado

Foreword
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Chapter 16

16.1  INTRODUCTION

Biodegradable polymers are superior to traditional nonde-
gradable polymers since they do not need subsequent sur-
gical removal after being implanted in bodies. Thus, they 
have gained widespread application in biomedical areas 
in recent years, such as tissue engineering, drug delivery, 
gene delivery, and bioimaging [1–4]. Among biodegrad-
able polymers, biodegradable elastomeric polymers have 
received increasing attention because their compliance un-
der force can closely resemble the elastic nature of many 
soft tissues such as heart valves, blood vessels, tendons, 
cartilage, and bladder [5–7]. Elastomers are usually amor-
phous polymers with relatively low glass transition tem-
perature (T

g
). When used as an implantable material, the 

presence of at least one segment with a glass transition 

temperature (T
g
) lower than room temperature or at least 

body temperature (37 °C) is necessary to make sure the 
polymer is in an elastic state and considerable segmental 
motion is possible in the temperature range used. Polyesters 
like poly(ε-caprolactone) (PCL), poly(dioxanone) (PDO), 
and poly(δ-valerolactone); some poly(carbonate)s; and 
their copolymers synthesized by ring-opening polymeriza-
tion (ROP) have low T

g
s and can be used as elastomers. 

This method is restricted by the stability of cyclic mono-
mers used, which are usually 5-, 6-, or 7-membered rings. 
Thus, other ROP-derived polymers such as poly(l-lactide) 
(PLLA), poly(glycolide) (PGA), and their copolymers 
(PLGA) have higher T

g
s and are in glassy state, brittle, 

and stiff at the intended use (room or body) temperature 
[2,3,8,9]. Compared with ROP, polycondensation provides 
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more options. Diacid, diol, or hydroxyalkanoate monomers 
used for polyester synthesis may have long aliphatic chains  
to ensure the softness and elasticity of the obtained poly-
esters via polycondensation [1,7,10,11]. Among various  
polymerization methods used in polycondensation, such as 
thermal polymerization, microbial synthesis, and enzymatic 
polymerization, catalyst-free and solvent-free thermal  
polymerization are the most commonly used [1,7,10,11]. 
Multifunctional monomers including unsaturated mono-
mers can be used in polycondensation, conferring the (pre)
polymers with thermal or photo-cross-linkable (or curable) 
properties [1,2,10–12]. Among the cross-linkable elasto-
meric polymers, poly(polyol sebacate) [10,12–15] and 
citric acid-based poly(diol citrate) [2,16–27] are the two 
most widely researched. In this chapter, we will focus on 
the design strategies and applications of citrate-based bio-
degradable elastomeric polymers (CABEs).

Citric acid is a natural, weak organic acid that abundantly 
exists in many vegetables and fruits, especially citrus fruits 
like lemon and lime, where the citrate concentration can 
reach up to 8% after drying. As an intermediate in the tricar-
boxylic acid cycle (TCA cycle, also known as the citric acid 
cycle or Krebs cycle), which occurs in the metabolism of 
all aerobic organisms, citric acid is nontoxic and multifunc-
tional. Thus, it is an excellent choice of a starting material 
for biodegradable polymer synthesis. Possessing three car-
boxyl groups and one hydroxyl group, citric acid has been 
widely used as a chelating or binding agent of various metal 
ions and metal oxide nanoparticles [28,29]. A majority of the 
body’s citrate content is located in skeletal tissues and plays 
a large role in metabolism, calcium chelation, hydroxyapa-
tite (HA) formation, and regulation of the thickness of bone 
apatite structure [30–33]. Citrate not only functions as a 
calcium-solubilizing agent but is also a strong bound and 
integral part of the bone nanocomposite [33]. Citrate also 
has a unique and innate ability to induce HA formation in 
simulated body fluid (SBF) [34]. The rich pendent COOH 
groups in CABEs, like poly(1,8-octanediol citrate) (POC) 
and poly(poly(ethylene glycol) maleate citrate) (PEGMC), 
can also chelate calcium ions. The polymers and their com-
posites with HA have proven to be promising orthopedic 
biomaterials that can promote the biomineralization process 
and increase osteoblast adhesion and mineralization, thus  
enhancing osteointegration [2,35–39]. In all CABE designs, 
citric acid participates in prepolymer formation through 
polycondensation with diols, and it also preserves pendent 
functionalities for postpolymerization through esterification 
to produce a cross-linked polyester network. Cross-linking 
confers elasticity and mechanical stability to the polymers 
similar to extracellular matrix (ECM), in which collagen 
and elastin are also all cross-linked polymers [40]. In addi-
tion to the multifunctionality and biocompatibility of citric 
acid, the sodium form of citric acid, sodium citrate, is an 
anticoagulant often used in hospitals [17]. This implies that 
CABEs may also possess suitable hemocompatibility when 

in contact with blood, which will benefit the application of 
CABEs in blood-contacting applications. Because of all 
the advantages stated earlier, the research on CABEs is just 
unfolding. In this book chapter, we will discuss the design 
strategies and applications of previous CABEs and the out-
look of their future development in biomedical engineering.

16.2  DESIGN STRATEGIES OF CABEs

Material design strategies are always driven by applica-
tion demands. As the first polymer series of CABE fam-
ily, poly(diol citrate)s were initially designed for soft tissue 
engineering applications like blood vessels, so the chain 
length of diols used to react with citric acid should be long 
enough to guarantee the obtained polymers to be elasto-
meric, and 1,8-octanediol (OD) was proved to be the right 
diol, so was the born of POC. After that, a lot of modifi-
cations were made on POC by introducing additional di-
ols or chain extension, to adjust the elasticity, mechanical 
strength, and degradation profile of the obtained polymers; 
bring new properties; and introduce new cross-linking 
mechanisms to the obtained elastomers (Figure 16.1). To 
obtain hydrophilic CABEs, water-soluble diol such as 
poly(ethyl glycol) (PEG) was also used. On the other hand, 
novel design strategies can also bring new application di-
rections. The creations of biodegradable photoluminescent 
polymer (BPLP) [2,20,21] and injectable citrate-based 
mussel-inspired bioadhesives (iCMBA) [22,23] brought 
bioimaging and bioadhesive applications to CABE family, 
respectively.

The design strategies of CABEs also adapted the char-
acteristics of the monomers used. Citric acid is a multi-
functional monomer containing three carboxyl groups and 
one hydroxyl group; in CABEs, it not only participates in 
prepolymer formation by reacting with diols but also pre-
serves pendent functionalities for postpolymerization or 
concurrent/postmodification with other molecules such as 
amine-containing molecules. In addition to citric acid, other 
acids were also used. By adjusting the feeding ratio of diol 
to citric acid, hydroxyl group-terminated CABEs were syn-
thesized, which can be used for further chain extension by 
using hydroxyl groups reaction with diisocyanate or initiat-
ing lactones ROP. Additional diols except OD, such as dou-
ble bond-containing diols, were also introduced into CABE 
systems to adjust the polymer properties (Figure 16.1).

16.2.1  Poly(Diol Citrate) Synthesis

As mentioned earlier, CABE prepolymers are synthe-
sized via a simple thermal polycondensation process by 
reacting citric acid with diol monomers (Figure 16.2 and 
Table  16.1). Citric acid confers CABEs with pendent 
functionality for postmodification or concurrent modifi-
cation and cross-linking. While the elasticity of CABEs 
mostly depends on the chain length of the diol used, if 
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the chain length of the diol used is too short, like ethyl-
ene glycol or 1,4-butanediol, the obtained polymers are 
likely to be brittle and stiff. Conversely, long aliphatic 
chains may increase elasticity but may also slow down 
material degradation. Although polymers like poly(1,12-
didecanediol-co-citrate) (PDDC), synthesized by the 
polycondensation of citric acid and 1,12-dodecanediol, 
have shape-memory properties [49], the most used hy-
drophobic diol is 1,8-octanediol (OD) as it is the longest 
diol that can dissolve in water or PBS.

By adjusting postpolymerization temperature and cross-
linking (curing) time, the mechanical properties, degradation 
profiles, and surface energies of the cross-linked polyester 
networks, POC can be tuned to fit a wide range of tissue en-
gineering applications (see Table 16.2) [2,16–18,35,50–56]. 
An increase in postpolymerization temperature and cross-

linking time and the application of vacuum resulted in a 
network with increased mechanical strength due to the in-
creased cross-linking densities. As shown in Table 16.2, the 
range of mechanical properties of POC potentially meets 
the needs for the engineering of various soft tissues includ-
ing blood vessels, nerve, cartilage, and the bladders. The 
preliminary biocompatibility evaluation showed that POC 
supported the attachment and proliferation of human aor-
tic smooth muscle cells (HASMC), endothelial cells (ECs), 
and 3T3 fibroblasts cells without any surface modifications 
[16,18]. Histological analysis of POC films subcutaneously 
implanted in Sprague-Dawley (SD) rats further confirmed 
that POC elicited minimal inflammatory responses. After 
4-month implantation, the thickness of fibrous capsule was 
smaller than the reported values of the widely used com-
mercial biodegradable polymer, PLGA [16,18].
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TABLE 16.1  Citrate-Based Biodegradable Elastomers: Composition, Name, Properties, and Their Applications

Monomersa

Pendent Modificationb Polymerc Properties and Applications Refs.Diol or Polyol Citric Acid and Diacid

HO OH8
1,8-octanediol (OD)

 POC Hydrophobic, suitable elasticity;  
vascular graft, bone composite,  
drug delivery

[2,16–18,29,35]

PEG  PEGC Hydrophilic, high water adsorption [25–27]

OD

HO
OH

O

SHNH2

Amino acid

R
R = or

BPLP Fluorescent; bioimaging, drug  
delivery, tissue engineering

[2,20,21]

PEG WBPLP

PEG

COOH

COOH

Citric acid (CA)

HOOC

OH B

A1 A2A3

HO

HO

R

NH2

R� = COOH or H

iCMBA Bioadhesive, injectable; bioglue,  
wound closure, tissue bioadhesive

[22,23]

OD
O

O

H2N

cMA-POC Photo-cross-linkable [41]

HO OH
N

MDEA

 POCM Adjust mechanical and degradation 
properties

[18]

HO OH

m

m = 2,4,6 or 8

N+
Br–

 POC-Q(m+2) Conferring antibacterial properties  
to PDC

[42]

HO
OHN

H

H
N

 POC-DA NO-combining; vascular graft [43–45]

HO OH

O

O

 POC-clickd Enhanced mechanical properties,  
surface conjugate—easy—vascular  
graft, bone composites

Unpublished
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HO OH

N3N3

 

HO
OH

O

O

O

O

or

OH

OHHO

O O

OO

O O

 Acrylated POC Photo-cross-linkable [46]

OD

OO O

 POMaCe Photo-cross-linkable [24]

PEG or OD HO OH

OO

 PEGMC or 
POMCf

Photo- or free radical cross-linkable; cell 
delivery, injectable bone composite

[27,35–37,47]

Pre-polymer Chain Extension Polymerc Properties and Applications Refs.

Pre-POC HDIg CUPE Enhanced mechanical properties; vascular graft,  
bone composites

[19]

BPLP HDIg CUBPLP Fluorescent, enhanced mechanical properties;  
vascular graft, bioimaging

[48]

Pre-POMCg HDIg CUPOMC Photo-cross-linkable [47]

BPLP ROP of lactide BPLP-LA Fluorescent PLA Unpublished

aFor all the hydrophobic polymers, like POC, BPLP, POCM, POC-DA, POMaC, POC-click, 1,8-octanediol, and citric acid, that composed the main chain backbone of the polymers, functional diols or polyols 
were used as additional monomers.
bPendent modification refers to the modification of the pendent functional groups on citrate-based prepolymers. The modification can be conducted concurrently with (BPLP, WBPLP, and iCMBA) or after 
(cMA-POC) the polycondensation process of diol and citric acid.
cHere, polymers are the final cross-linked polymers, except for BPLP, WBPLP, and BPLP-LA. The full names of polymer abbreviations are listed as follows: POC, poly(1, 8-octanediol citrate); PEGMC, 
poly(poly(ethylene glycol) maleate citrate); BPLP, biodegradable photoluminescent polymer; WBPLP, water-soluble BPLP; iCMBA, injectable citrate-based mussel-inspired bioadhesive; CUPE, cross-linked 
urethane-doped polyester; CUBPLP, cross-linked urethane-doped BPLP.
dPOC-click is formed by thermo-cross-linking the mixture of pre-POC-N3 (azide-containing POC prepolymer) and pre-POC-Al (alkyne-containing POC prepolymer); the process applies synchronous binary 
cross-link mechanism, esterification, and thermal click reaction, and the residual azide groups on the surface of POC-click film or scaffold paved the way of surface bioconjugation through strain-promoted 
alkyne-azide cycloaddition (SPAAC), another copper-free click reaction.
ePOMaC also applies dual cross-link mechanism, thermal esterification, and photo-cross-linking of double bonds.
fPEGMC was used as hydrogel at room or body temperature; thus, only double bonds serve as cross-linking functionality.
gHDI: 1,6-hexamethylene diisocyanate.
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TABLE 16.2  Mechanical and Degradation Properties of Citrate-Based Biodegradable Elastomers and Some  
Selected Soft Tissues

Polymer
Tensile 
Strength (MPa)

Modulus 
(MPa)

Elongation 
(%) Degradation rate

Tested cells and  
Animals Refs.

POC 2.93-11.15 1.85-13.98 117-502 100% in 26 weeksa HASMCs/HAECs

Sprague-Dawley rats

[18]

POMaC 2.45-9.94 0.05-1.52 51-441 15-76% in 10 weeksb 3T3 fibroblasts

Sprague-Dawley rats

[24]

CBPLPc 2.2-7.6 2.4-8.9 140-272 100% in 31 weeksd 3T3 fibroblasts, nude mice [20]

POC-DA 1.49-10.71 5.91-32.64 201-290 20% loss in 6 weekse PASMC/HASMC/HUVEC

Sprague-Dawley rats

[43–45]

Acrylated POC 2.8-15.7 7.4-75.9 86.1-260 27-35% in 2 monthsf – [46]

POC-click 18.3-41.32 16.6-275.9 78-323.9 100% in 34 weeksg 3T3 fibroblasts, HUVEC

Sprague-Dawley rats

Unpublished

CUPE 14-37 2.2-32 217-309 15% in 8 weeksh 3T3 fibroblasts

Sprague-Dawley rats

[19]

CUPOMC 1-10.5 0.5-5.8 175-220 - 3T3 fibroblasts [47]

CUBPLP 1.2-49.41 0.2-52 240-450 13-22 h in 0.05 M 
NaOH

3T3 fibroblasts [48]

Porcine aortic 
heart valve 
(radial)

2.4 6.4 134.8 – – [50]

Porcine aortic 
heart valve 
(circumferential)

8.3 44.7 48.7 – – [50]

Ulnar peripheral 
nerve

9.8-21.6 – 8-21 – – [51]

Human coronary 
artery

1.4-11.14 – – – – [52]

Bovine elastin – 1.1 – – – [53]

Human ACL 24-112 – – – – [54]

Human cartilage 3.7-10.5 – – – – [52]

Smooth muscle 
relaxed

– 0.006 300 – – [55]

Porcine lung – 0.005 – – – [56]

aFor POC (80 °C, 2 days), incubated in PBS (pH 7.4, 37 °C).
bFor POMaC with different maleic anhydride ratios and thermo- or photocured under different conditions, incubated in PBS (pH 7.4, 37 °C).
cCBPLP refers cross-linked BPLP.
dFor CBPLP-Cys0.8 (80 °C, 2 days), incubated in PBS (pH 7.4, 37 °C).
eFor POC-DA with different DA ratios (80 °C, 4 days), incubated in PBS (pH 7.4, 37 °C).
fSamples with different compositions were cross-linked at 80 °C for 0.5 days, followed by 120°C, 1 days and 120 °C, vacuum, 1 day. Degradation was 
conducted in PBS (pH 7.4, 37 °C).
gFor POC-click3 (100 °C, 3 days), incubated in PBS (pH 7.4, 37 °C).
hFor CUPE1.2 (80 °C, 2 days), incubated in PBS (pH 7.4, 37 °C).
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Although POC, as a representative poly(diol citrate), is 
soft and elastic, it is still considered relatively weak, with a 
tensile strength typically no more than 10 MPa at dry state 
(Table 16.2). This is already much lower than that of human 
anterior cruciate ligament (38 MPa) and may become even 
lower when fabricated into porous scaffolds and/or used 
in vivo at wet state. To modify the material properties, func-
tionalities, and processability of poly(diol citrates), various 
diols, diacids, and/or diamines were introduced to CABEs, 
either to adjust the material properties or to introduce a sec-
ond cross-linking mechanism. Pendent group (carboxyl or 
hydroxyl) modification and chain extension of CABEs were 
also conducted to improve the mechanical properties and 
functionalities of CABEs [22,23,27,35–37]. This will be 
discussed in details in the following sections.

16.2.2  Molecular Design of CABEs

Based on poly(diol citrate), several molecular design strat-
egies were adopted for CABE syntheses. First, the intro-
duction of additional functionalities or additional cross-link 
mechanisms using various additional diols or diacids were 
studied. By applying this strategy, a number of CABEs 
have recently been developed, including poly(1,8-octane-
diol-co-citrate-co-MDEA) (POCM) [18], POC with qua-
ternary ammonium salt (POC-Q) (antibacterial POC) [42], 
diazeniumdiolated poly(1,8-octanediol citrate) (POC-DA) 
[43–45], poly(1,8-octamethylene maleate (anhydride) ci-
trate) (POMaC) [24], poly(octamethylene maleate citrate) 
(POMC) [39], POC-click (unpublished), acrylated POC 
[46], and PEGMC [27,35,36] (Table 16.1).

Second, the modification of the pendent functionality 
of CABEs through reactions with amines or amino acids 
was developed, which can proceed concurrently or after 
the polycondensation of various CABE polymers, such as 
BPLP [2,20,21], iCMBA [22,23], and cross-linked meth-

acrylated POC (cMA-POC) and cross-linked methacry-
lated poly(1,12-dodecanediol citrate) (cMA-PDDC) [41] 
(Table 16.2).

Third the chain extension through reacting with chain ex-
tenders such as 1,6-hexamethylene diisocyanate (HDI) was 
also developed. Such strategy has resulted in cross-linked 
urethane-doped polyester elastomers (CUPEs) based on 
POC [19], cross-linked urethane-doped BPLP (CUBPLP) 
[44] and cross-linked urethane-doped POMC (CUPOMC) 
[45]. This can also happen through initiating lactones’ ROP 
based on BPLP polymers to form fluorescent polylactone, 
BPLP-polylactone (BPLPL) (unpublished) (Table 16.2).

16.2.2.1  Additional Diols

As shown in Figure 16.3, various diol or diacid monomers 
have been used in CABE systems to adjust material proper-
ties or to introduce additional functionalities. After intro-
ducing an amine-containing diol (N-methyldiethanolamine, 
MDEA) into POC, the resulting POCM showed enhanced 
mechanical strength and faster degradation rates (Tables 16.1 
and 16.2). As reported, POCM10% and POCM5% showed 
mass losses of 72% and 48%, respectively, after degrading 
in PBS at 37 °C for 4 weeks. This is much higher than that of 
POC degraded in the same period (about 20%) [18]. Higher 
degradation rates of POCM polymers benefit from the posi-
tive charges and high water solubility of MDEA because 
the positive charges can neutralize the negative charges of 
degradation products, thus promoting the reaction balance 
of hydrolysis degradation to move forward.

By introducing quaternary ammonium salt diol into POC, 
Wynne et al. conferred antibacterial properties to the result-
ing POC-Q through a convenient and cost-effective thermal 
polycondensation process [42]. These materials have a tai-
lored surface and strong antibacterial properties that make 
them good candidates as biodegradable packaging materials.
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In cardiovascular applications, nitric oxide (NO) re-
leased by vascular ECs has been shown to be a potent an-
tithrombotic and antineointimal hyperplasia (NIH) agent 
by inhibiting platelet adhesion/activation and leukocyte 
chemotaxis, as well as smooth muscle cell (SMC) prolif-
eration and migration. To increase the potential of CABEs 
in cardiovascular applications a NO-binding diol, N, N-
bis(2-hydroxyethyl) ethylenediamine was introduced into 
POC polymer by Ameer’s Lab to form a NO-releasing 
diazeniumdiolated POC, called POC-DA (Table  16.1) 
[43–45]. POC-DA possessed similar tensile strength (1.49-
10.71 MPa) to POC, a higher Young’s modulus (5.91-
32.64 MPa), and an elongation at break in the range of 
201-290% (Table  16.2). Cross-linked POC-DA polymer 
can deliver different doses of NO for 3 days by varying the 
amine content and the exposure time to pressurize NO gas 
without a significant impact on copolymer degradation rate 
[43]. Suitable NO-releasing dose was shown to be benefi-
cial to the proliferation of human umbilical vein endothelial 
cells (HUVEC), while the proliferation of HASMC was sig-
nificantly inhibited [44].

16.2.2.2  Additional Cross-Link Mechanism

The introduction of functional diols or diacids, such as 
double bond-containing diols or diacids and click moiety-
containing diols, into CABE system, can confer the system 
with a second cross-link mechanism, such as free radical 
cross-linking of double bonds or click reaction between al-
kyne and azide groups (Figure 16.3). The introduction of a 
secondary cross-linking mechanism can adjust the mechan-
ical properties and degradation properties of CABEs and  
can also confer CABEs with an additional and effective 
surface functionality for further bioactive molecule surface 
conjugation. The second cross-link mechanism is impor-
tant, especially in the case of PEG-based hydrogel systems 
used for cell delivery or tissue bioadhesives at room or body 
temperature, where thermo-cross-link mechanism is not ap-
propriate. In recent years, photo-cross-linkable biodegrad-
able materials have attracted increased attention in tissue 
engineering, drug or cell delivery, and wound repair appli-
cations [57,58]. Recently, Yang Lab registered a new type of 
CABEs referred to as poly(diol maleate citrates) (PDOMC), 
containing hydrophobic POMaC [24] and POMC [47] 
and hydrophilic PEGMC [27,36–38] (Table  16.1 and 
Figure 16.3) based on previous poly(diol citrate). Similar 
work was also done by Zhao and Ameer, but instead of in-
troducing vinyl-containing diacid, double bond-containing 
diol or triol monomers (Table 16.1 and Figure 16.3) were 
introduced into POC to form acrylated POC [46]. Both hy-
drophobic and hydrophilic vinyl functional CABE systems 
can be quickly cross-linked into a thermoset elastomers by 
either thermo-cross-linking or double bond photo-/redox 
cross-linking, or both of them, namely, dual cross-linking 

mechanism (DCM) [24,27,36–38,47]. The DCM allows the 
polymer to be quickly cross-linked by redox initiators or 
ultraviolet (UV) light to preserve valuable pendent carboxyl 
and hydroxyl groups for potential bioconjugation. PDOMC 
networks cross-linked by this route also show a pH-dependent 
swelling capability, which is useful in pH-sensitive drug de-
livery applications. The free radical (either photo- or redox) 
cross-linking method can also be combined with a thermo-
cross-linking mechanism to further cross-link the network to 
fine-tune the mechanical and degradation properties in order 
to meet a variety of soft tissue engineering applications. As 
shown in Table 16.2, POMaC, POMC, and acrylated POC 
elastomer families have a wide range of mechanical prop-
erties (Young’s modulus of 0.05-75.9 MPa, tensile strength 
of 2.45-15.7 MPa, and elasticity of 51-441%) that can be 
modulated through adjusting monomer ratios, photoinitia-
tor or redox initiator concentrations, and the use of DCM. 
Cells seeded onto the surface of POMC and POMaC films, 
or encapsulated in PEGMC hydrogels, exhibited normal 
spread morphologies. In vivo host response studies show a 
decline in inflammatory response and reduction in capsule 
thickness over a 4-week period, and no tissue necrosis was 
found throughout the animal studies.

The ideal bioelastomer-based implant materials not 
only should be soft and elastic, possess suitable mechani-
cal properties to match with the target tissue or organ, and 
be biocompatible to minimize adverse biological responses 
but also should be amenable to surface modification with 
bioactive molecules such as growth factors, cell-binding 
peptides, or signaling molecules to positively and selec-
tively recognize, interact with, support, and promote the 
appropriate cellular responses, thus accelerating the re-
generation of the target tissue or organ [59–63]. Although 
most CABEs possess some COOH and OH groups 
on their surface [16–18], these groups are not effective 
enough, especially for surface bioconjugation. As one of 
the most effective surface/interface reactions, click chem-
istry [64–69], especially copper-free click chemistry [70–73] 
that is more applicable in biorelated systems, endows a 
promising way for surface conjugation. Therefore, click 
chemistry was introduced into CABE system and served 
as both an additional cross-linking mechanism and a sur-
face bioconjugation tool. By introducing azide and alkyne 
functional diols in POC syntheses, azide (POC-N

3
)- and 

alkyne (POC-Al)-functionalized POC prepolymers were 
synthesized (Table 16.1 and Figure 16.3). To fully utilize 
the thermal postesterification process of COOH and OH 
groups on CABE prepolymers and avoid the use of copper 
catalyst [74,75], POC-N

3
 and POC-Al prepolymers were 

mixed together and heated at 100 °C for designated times. 
Accompanied with thermal esterification between COOH 
and OH groups, thermal click reactions between azide and 
alkyne groups proceeded simultaneously; thus, dual cross-
linked (esterification and thermal click reaction) POC-click 
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elastomers were formed in a one-step postpolymerization 
process rather than a two-step process [24]. The DCM and 
the rigid property of triazole rings resulting from the click 
reaction [67] confer POC-click with significantly enhanced 
mechanical strength. The tensile strength of POC-click can 
reach as high as 40 MPa (Table 16.2), which is comparable 
to or even higher than that of CUPE (see Table 16.2, will be 
discussed in the following paragraphs), while the degrada-
tion time of POC-click has no significant increase as CUPE 
does when comparing with POC (Table 16.2). The degrada-
tion profile of POC-click performed a “first slow then fast” 
pattern, which is sometimes more favorable in bioengineer-
ing applications for the good maintenance of mechanical 
properties before the fulfillment of bioregeneration process 
and fast degradation after. Furthermore, the residual azide 
groups on the surface of POC-click bioelastomers paved the 
way for convenient and high-yield surface conjugation of 
bioactive molecules through strain-promoted alkyne-azide 
cycloaddition (SPAAC), a copper-free click reaction.

16.2.2.3  Pendent Group Modification

As a multifunctional monomer, citric acid contains three 
carboxyl groups and one hydroxyl group. Even after being 
synthesized into prepolymers with different diols, there are 
still some COOH and OH groups preserved for pendent 
group modifications (concurrent with or after polyconden-
sation process) with either NH

2
 or OH-containing mol-

ecules (react with COOH groups) or COOH, COCl, 
or NCO-containing molecules (react with OH groups). 
When an excess amount of diol was used to react with cit-
ric acid, hydroxyl-terminated POC or other CABEs’ pre-
polymers were obtained that can react with diisocyanate 
molecules such as HDI to extend the polymer chains (such 
as CUPE [19], CUBPLP [47], and CUPOMC [57]). This 
is referred to as chain extension reaction and will be dis-
cussed in Section 16.2.2.4. In this section, we will discuss 
the pendent modification of poly(diol citrates) with amino 
acids, l-3,4-dihydroxyphenylalanine (l-DOPA) or dopa-
mine, and other amine-containing molecules (Figure 16.3). 
Pendent group modification of poly(diol citrates) brought 

some remarkable and intriguing properties such as photolu-
minescent (BPLP) and bioadhesive (iCMBA) properties to 
the resulting polymers.

16.2.2.3.1  Development of BPLPs

Biodegradable fluorescent polymers have attracted a lot of 
attention in targeting drug delivery, bioimaging, and tissue 
engineering. The most reported fluorescent biodegradable 
polymers are made by either conjugating or encapsulating 
organic dyes or quantum dots (QDs) with biodegradable 
polymers [20,21,66,75–80]. However, the low photobleach-
ing resistance of organic dyes or the unacceptable toxicity 
of inorganic QDs largely limited the applications of these 
fluorescent biodegradable polymers. Therefore, developing 
fully biodegradable and biocompatible fluorescent polymer 
is urgently needed.

Recently, based on pure natural citric acid and all 20 
essential α-amino acids as well as biocompatible aliphatic 
diols, Yang et  al. developed a family of novel aliphatic 
BPLPs, referred to as BPLPs [20,21]. Unlike nondegradable 
aromatic fluorescent polymers or organic dyes commonly 
used in the lighting industry and bioimaging applications, 
BPLPs are aliphatic biodegradable oligomers synthesized 
from biocompatible and biodegradable monomers through 
a convenient and cost-effective thermal polycondensation 
process. Although whether (l-) α-amino acids contribute to 
the formation of BPLP backbones or not is still unclear, we 
conjecture that the synthesis of BPLPs is a kind of pendent 
modification of poly(diol citrate) concurrent with the poly-
condensation process (Figure  16.4). Briefly, BPLPs were 
synthesized by reacting one of the 20 natural (l-) α-amino 
acids with citric acid and diols (aliphatic diols such as OD 
or macrodiols such as PEG) at 140 °C for a certain time, 
which depends on the diol used and the feeding ratios of 
amino acid over other monomers.

Among BPLPs, BPLP-cysteine (BPLP-Cys, using  
l-cysteine) and BPLP-serine (BPLP-Ser, using l-serine) 
display the best fluorescent properties in terms of fluo-
rescence intensity and quantum yield. The quantum yield 
of BPLP-Cys can be as high as 62.3% (Figure 16.5) [20]. 

FIGURE 16.4  Pendent (concurrent with or after polycondensation process) modification of citrate-based biodegradable elastomers (CABEs).
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The fluorescence emission wavelength can be tuned from 
blue to red by using different amino acids in BPLP synthe-
ses. BPLPs in different modalities (polymer solution, film, 
scaffold, and nanoparticles) have all shown strong fluores-
cence. Due to pendent COOH and OH groups mostly 
provided by citric acid, BPLPs can be further polymerized 
into elastomeric cross-linked BPLP (CBPLP). After cross-
linking, CBPLPs exhibited improved mechanical strengths 
compared to POC (Table 16.2) [20].

16.2.2.3.2  Development of iCMBA

In the past two decades, bioadhesives, tissue sealants, and 
hemostatic agents have been widely used in clinical surgi-
cal practices for blood loss control and wound healing [81]. 
Although the existing tissue bioadhesives like fibrin glues, 
cyanoacrylate tissue adhesives, gelatin glues, and polyure-
thane adhesives are commercially available and have been 
used in many clinical applications [22,23,82–87], these 
bioadhesives were largely limited by their toxicity or poor 
mechanical and adhesive strength, especially in wet condi-
tions. In recent years, inspired by the high underwater ad-
hesive strength of some maritime creatures, such as blue 
mussel Mytilus edulis [88], researchers developed a new 
family of adhesives based on the catechol-containing amino 
acid called l-3,4-dihydroxyphenylalanine (l-DOPA), a 
posttranslational hydroxylation of tyrosine found in the 
structure of secreted mussel adhesive foot protein, which 
was discovered to be the reason for the strong adhesion abil-
ity of mussel in aqueous conditions [88–90]. Under oxidiz-
ing or alkaline conditions, DOPA is believed to promote 
cross-linking reactions through the oxidation of catechol 
hydroxyl groups to ortho-quinone, which subsequently trig-
gers intermolecular cross-linking. The oxidized DOPA was 
found to also contribute to the strong adhesion ability to bi-
ological surfaces, through the formation of covalent bonds 
with available nucleophilic groups on these surfaces such as 
NH

2
, SH, OH, and COOH groups [89,91–94].

By introducing L-DOPA or its analog dopamine into 
poly[poly(ethylene glycol) citrate] (PEGC), Yang et al. de-
veloped a novel family of biodegradable and strong wet-
tissue adhesives, referred to as injectable citrate-based 
mussel-inspired tissue bioadhesives (iCMBAs) [22,23]. 
iCMBAs were synthesized using a facile and cost-effective 
polycondensation reaction of FDA-approved and inexpen-
sive monomers including citric acid and PEG, concurrent 
with the pendent modification of dopamine/l-DOPA in a 
one-pot synthesis process (Table  16.1 and Figure  16.4) 
[22]. The introduction of catechol group into the structure 
of iCMBA prepolymers conferred them with strong adhe-
sion to wet-tissue surfaces as well as cross-linking capacity 
for bulk cohesive strength. The existence of hydrolytically 
degradable ester bonds formed by polycondensation in the 
backbone of iCMBA prepolymers made this family of ad-
hesives readily biodegradable, which makes iCMBA sig-
nificantly superior over other mussel-inspired bioadhesives, 
such as multiarmed PEG-based ones, which are essentially 
nondegradable [95]. In addition, the properties of iCMBAs, 
such as mechanical properties as well as degradation rate, 
could be tuned by adjusting the molecular weight of PEG 
and the feeding ratio of dopamine/l-DOPA [22]. iCMBAs 
exhibited excellent in  vitro and in  vivo cytocompatibility. 
In  vivo studies of iCMBA did not induce any significant 
inflammatory responses, and it was degraded and absorbed 
completely in rats within 28 days [22].

16.2.2.3.3  Other CABE Development

As mentioned earlier, NO-releasing POC-DA elastomers 
were developed in Dr. Ameer’s group. They were shown 
to release NO for 3 days in vitro and significantly reduce 
neointimal hyperplasia when implanted as a perivas-
cular wrap in a rat carotid artery injury model [43–45]. 
Although promising, POC-DA still suffered from a long 
curing time (often more than 3  days). By introducing 
double bonds through post-pendent group modification 

FIGURE 16.5  Emission spectra of BPLP-Cys (left) and BPLP-Ser (right) solution (in 1, 4-dioxane) at different excitation wavelengths [21]; photograph 
of 1, 4-dioxane, BPLP-Cys, and POC in the presence of an ultraviolet light source (middle).
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of poly(diol  citrate) prepolymers with 2-aminoethyl 
methacrylate, Wang et  al. developed a family of photo-
cross-linkable poly(diol citrate) (see Table  16.1 and 
Figure 16.3). After blending with miscible diazeniumdio-
lated NO donors followed by in situ and fast UV cross-
linking, a long-lasting NO-releasing elastomer was formed 
[41]. The NO-containing polymer network could be cured 
within 3 min under UV light and could release NO for at 
least 2 weeks, which is much longer than that of previous 
POC-DA elastomers (released NO for only 3 days). This 
may be attributed to the in situ encapsulation of miscible 
diazeniumdiolated NO donors in the fast UV-curing pro-
cess of the elastomers rather than NO-adsorbing after elas-
tomer formation in the case of POC-DA. These materials 
may be very useful in cardiovascular application.

Polyol monomer like xylitol was also used to compose 
biodegradable polymer poly(xylitol citrate) (PXC) with cit-
ric acid by a simple thermal polycondensation. The abun-
dant pendent hydroxyl groups on PXC, mostly introduced 
by xylitol, were used to react with methacrylic anhydride 
to obtain double bond functional PXC (PXCma), which 
can be formed into a bioelastomer network by photo-cross-
linking [96].

16.2.2.4  Chain Extension of CABEs

Chain extension often refers to the postmodification of one 
polymer by using a chain extender (such as diisocyanate) 
or initiating a second polymerization by the polymer itself. 
In CABEs, the syntheses of CUPE and BPLPL copolymers 
such as BPLP-PLA are classified as chain extension reac-
tions and will be discussed in the following sections.

16.2.2.4.1  Cross-Linked Urethane-Doped Polyester

Diisocyanate is often used in the chain extension reactions 
of biopolymers such as PLA, PCL, and their copolymers 
[97–101]. The combination of hard segment and soft seg-
ment may confer the resulting polyurethanes with shape-
memory property [100,101]. Polyurethane is an important 
type of elastomeric polymer for biomedical applications 
[1,9,11]. Chain extension or cross-linking by diisocyanate 
can be adapted to many OH-terminated or OH-containing 
polymers or prepolymers [102]. The convenience of the 
urethane chemistry has made it into a very popular way of 
polymer chain extension method in biomaterial designs.

Although a lot of CABEs, such as POC, BPLP, and 
POMC, have shown great potential for tissue engineer-
ing, however, they are weak in mechanical strength espe-
cially when they were molded into porous scaffolds and 
used in vivo at a wet state. For example, POC underwent a 
significant loss in peak stress from 2.93 ± 0.09 MPa (film) 
to 0.3 ± 0.1 MPa (scaffold) when molded into porous scaf-
folds [103]. To obtain stronger elastomer, Dey et al. took 
advantage of excellent elasticity of cross-linked polyester 

network and the strong mechanical strength of polyure-
thanes and developed a new family of CUPE based on 
POC [19]. CUPE prepolymers were synthesized from di-
luted pre-POC solution in 1,4-dioxane (3 wt%), which was 
reacted with various molar ratios of HDI to pre-POC (0.9, 
1.2, and 1.5) at 55 °C with continuous stirring for several 
days, until the characteristic absorbent peak at 2267 cm−1of 
isocyanate (NCO) group in FTIR spectra disappeared 
(Figure 16.6). Similar to POC, some pendent carboxyl and 
hydroxyl groups originally from citric acid were preserved 
on CUPE prepolymers. This made them still cross-linkable 
by conducting a postpolymerization process. The cross-
linking density between polymer chains can be adjusted by 
controlling the postpolymerization temperature and dura-
tion. The doped urethane bonds in the polyester served as 
a chain extender and enhanced hydrogen bonding within 
the network to produce elastomers with tensile strength as 
high as 41.07 ± 6.85 MPa while the elongation at break was 
still maintained at over 200% [19]. Amazingly, a simple 
urethane-doping chemical modification on POC resulted in 
an elastomer with almost 30 times higher tensile strength 
from 1.54 Ma of POC (80 °C, 4  days) to 44.98 MPa of 
CUPE1.2 (80 °C, 3 days).

CUPE polymers could be tuned to meet a variety 
of needs by varying the length of diols used in pre-POC 
synthesis, the feeding ratios of HDI over pre-POC, and 
postpolymerization conditions [104]. Preliminary cytocom-
patibility results showed that 3T3 fibroblast and SMCs were 
able to adhere and proliferate on a CUPE surface with a 
growth rate comparable to that on a PLLA control. Unlike 
previous POC, the higher molecular weights and nonsticky 
nature of CUPE prepolymers allow the use of other scaf-
fold fabrication techniques such as thermally induced phase 
separation technique (TIPS) and electrospinning [19] in ad-
dition to salt-leaching method. The soft and elastic three-
dimensional porous scaffold made by TIPS technology 
showed a highly porous structure, and the thin scaffold 
sheets allowed for even seeding, growth, and distribution 
of 3T3 fibroblasts.
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FIGURE  16.6  Synthesis and cross-linking process of urethane-doped 
citrate-based biodegradable elastomers (UCABEs).
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Stimulated by the success of CUPE, other urethane-
doped CABEs were also developed in our Lab, including 
urethane-doped BPLP (UBPLP) and its cross-linked form 
(CUBPLP) [48], as well as photo-cross-linkable urethane-
doped polyester elastomers based on POMC (CUPOMC) 
[47] (Table  16.1 and Figure  16.4). Based on the BPLPs, 
Yi et  al. developed a new type of urethane-doped BPLP 
(UBPLP) by chain extension reaction of BPLP using HDI. 
Inherited from BPLPs, UBPLPs demonstrated strong flu-
orescence and excellent cytocompatibility. Cross-linked 
UBPLPs (CUBPLPs) showed soft and elastic but strong 
mechanical properties, in which the tensile strength can 
reach 49.41 ± 6.17 MPa with a corresponding elongation 
at break of 334.87% ± 26.31%. Even after being molded 
into porous triphasic vascular scaffolds, CUBPLP showed 
strong mechanical properties with a burst pressure of 
769.33 ± 70.88 mmHg and suture retention strength of 
1.79 ± 0.11N. Without cross-linking, UBPLP can be fab-
ricated into stable and photoluminescent nanoparticles by 
a facile nanoprecipitation method. With a quantum yield 
as high as 38.65%, both CUBPLP triphasic scaffold and 
UBPLP nanoparticles could be noninvasively detected 
in vivo. UBPLPs represent another innovation in fluorescent 
biomaterial design and may offer great potential in advanc-
ing the field of tissue engineering and drug delivery where 
bioimaging has gained increasing interest. Besides UBPLPs 
and their cross-linked form CUBPLPs, another urethane-
doped CABE based on photo-cross-linkable POMC 
(CUPOMC) was also developed in our lab. CUPOMC pos-
sesses tunable mechanical properties and degradation pro-
files. CUPOMCs could be either thermo-cross-linked or 
UV cross-linked providing fabrication flexibility for these 
polymers and fostering more convenient applications to 
various biomedical areas than previously developed ther-
mal-curable biodegradable elastomers. Preliminary cell cul-
ture studies in vitro demonstrate that CUPOMCs could be 
good candidate materials for cell delivery carriers. The de-
velopment of CUPOMCs expanded the choices of available 
biodegradable elastomers for broad biomedical applications 
like soft tissue engineering.

16.2.2.4.2  Biodegradable Photoluminescent 
Polylactones

The development of BPLP not only brought new applica-
tions for CABEs, especially in bioimaging and targeting 
drug delivery areas, but also sparked the innovation on de-
veloping biodegradable photoluminescent aliphatic poly-
lactone biomaterials. Fluorescence imaging has gained 
increasing attention in drug delivery and tissue engineer-
ing where biodegradable polymers are usually conjugated 
with photobleaching organic dyes or toxic QDs. Given that 
BPLP exhibited excellent photostability and biocompati-
bility, the authors’ group has started using BPLP to initiate 

the ROP of lactones for biodegradable photoluminescent 
polylactone (BPLPL) syntheses such as BPLPL-PLA. 
Developing biodegradable polylactone biomaterials repre-
sents new innovation on already widely used polylactone 
materials.

16.3  APPLICATIONS OF CABEs

16.3.1  Cardiovascular Applications

Cardiovascular disease remains the leading cause of mor-
bidity and mortality in the world with more than 54% of the 
deaths in the United States [105]. For many patients, suitable 
vein autografts are not always available [106] necessitating 
the use of synthetic grafts. Although synthetic grafts such 
as polyethylene terephthalate (PET) grafts and expanded 
polytetrafluoroethylene (ePTFE) grafts have demonstrated 
adequate performance when replacing large blood vessels 
(diameter > 6 mm) [107], they also reduced long-term pa-
tency compared to autografts because of thrombosis, re-
stenosis, and calcium deposition, especially when used in 
small-diameter blood vessels [108,109]. Additionally, PET 
and ePTFE are inert materials and nondegradable. PET and 
ePTFE are rigid and display mismatched compliance with 
the native arteries, which increases thrombosis and neointi-
mal hyperplasia, the main causes of graft failure. Thus, bio-
degradable elastomers have been developed to match the 
soft and elastic properties of blood vessels, provide suitable 
biocompatibility, and allow functionalization to mediate the 
biological responses of native tissues [1,2,5,7–12]. Among 
biodegradable elastomers, CABEs emerge as an important 
type of materials for biomedical applications. Herein, we 
will discuss the applications of CABEs in cardiovascular 
tissue engineering.

16.3.1.1  Vascular Scaffold Designs

POC has been studied for a wide range of tissue engineer-
ing applications, especially soft tissue engineering applica-
tions such as blood vessels because of the soft, elastic, and 
tunable mechanical properties. To address the mechani-
cal, compartmental, and microarchitectural requirement 
of small blood vessels, Yang et al. developed an implant-
able tubular biphasic POC scaffold composed of concen-
tric nonporous and porous layers to mimic the intimal and 
medial vessel layers (Figure 16.7) [18,103,110]. The inside 
nonporous phase provides a continuous surface for EC 
adhesion, proliferation, and differentiation, as well as me-
chanical strength and elasticity. The outside porous phase 
serves as a three-dimensional layer to facilitate the expan-
sion and maturation of SMCs and the establishment of an 
appropriate ECM to constitute the media. The mechanical 
properties of the whole construct were comparable to that of 
native arteries and veins. Cell culture experiment results us-
ing human aortic ECs and SMCs, along with the minimal  
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foreign body response found when subcutaneously implanted 
in rats, supported that POC might serve as a candidate ma-
terial for small-diameter blood vessel tissue engineering 
[18,103,110].

Although POC is biocompatible, soft, and elastic, the 
mechanical properties of POC are relatively weak. After 
chain extension using HDI, CUPE possesses much bet-
ter mechanical properties with a tensile strength up to 
40 MPa (for CUPE1.8 film) [19]. Even after being molded 
into similar tubular biphasic scaffolds as POC, the tensile 
strength of CUPE biphasic scaffold was still 5 MPa with an 
elongation still higher than 150% [111]. The burst pressure 
of CUPE nonporous tube were much higher than corre-
sponding POC scaffolds polymerized under similar condi-
tions. The burst pressure of CUPE biphasic scaffold was 
found to increase from about 1600 to 2600 mmHg with the 
thickness of nonporous CUPE phase increasing from 160 
to 384 μm. This result suggested that by simply varying the 
thickness of the inner nonporous layer, the burst pressure 
of CUPE scaffold could be adjusted to accurately match 
the burst pressure of the vessels being replaced [111]. 
Thin (~200 μm), strong, elastic, and porous CUPE scaffold 
sheets that are bonded together using a layer-by-layer ap-
proach were also developed by Tran et  al. [112]. CUPE 
thin sheets allowed for even cell distribution and can be 
bonded together through ECM secreted by cells in each 
sheet layers. The layer-by-layer technology was considered 
as an alternative way to construct complex tissue scaffold 
such as blood vessel scaffolds.

Similar to CUPE, fluorescent CUBPLPs were also used 
to fabricate triphasic small-diameter vascular grafts by Zhang 
and Yang to replicate the stratified architecture of native ves-
sels [48]. Different to biphasic scaffolds made by POC and 
CUPE [18,103,111], triphasic scaffolds were composed of a 
rough inner lumen surface, middle layer of porous scaffold 
with pore size of 1-20 μm, and outer layer of porous scaffold 
with pore size of 150-250 μm [48]. A rough surface is more 
favorable for ECs [113], and pore size of 1-20 μm is prefer-
able for the compartmentalization of ECs and SMCs simu-
lating the elastic lamina in native vessels [103]. Pore sizes of 
150-250 μm are ideal for the growth of fibroblast and the for-
mation of ECM [114]. The burst pressure and suture reten-
tion of CUBPLP triphasic scaffold could reach 800 mmHg 
and 1.79 N, respectively, which meet the requirements for 
off-the-shelf surgical implantation. By using CUBPLP, the 
scaffolds also possess in vivo detectable fluorescent proper-
ties, which will be very useful for the applications where 
fluorescence imaging may play an important role.

Although CUPE and other urethane-doped CABEs pos-
sess much higher mechanical strengths compared to POC, 
the applications of them were limited by the time-consuming 
synthesis process, low polymer concentration due to their 
low solubility in some common solvents, and prolonged deg-
radation time. To address these problems, POC-click elasto-
mer was developed by introducing click moieties containing 
diols and the usage of thermal click reaction (Table 16.1 and 
Figure 16.3). Although the structure of POC-click elastomer 
contains triazole rings, which are difficult to degrade, these 

FIGURE 16.7  Photograph (left) and SEM (right) image of soft POC biphasic scaffold consisting of an inner nonporous lumen surrounded by an outer 
concentric porous layer [18,103].
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triazole rings are covalently bonded with the polymer chain 
backbone through hydrolyzable ester bonds just like POC. 
POC-click elastomers showed a “first slow then fast” degra-
dation profile and can be totally degraded within 34 weeks, 
which is nearly the same rate as POC and much shorter 
than that of CUPE cross-linked under the same condition 
(100 °C, 3 days) (Table 16.2). After being molded into tri-
phasic scaffold similar to CUBPLP [112], the mechanical 
properties of POC-click triphasic scaffold were better than 
that of triphasic POC and CUPE scaffolds (data not pub-
lished) for vascular applications. In addition to the superior 
mechanical properties of the POC-click elastomers, the re-
sidual azide groups on the surface of POC-click scaffold 
enabled a convenient conjugation of bioactive molecules on 
the polymers, which makes POC-click polymer scaffolds 
more amenable for biomedical applications.

16.3.1.2  Biofunctionalization of CABE  
Vascular Grafts

Cell-binding peptides such as cyclic RGD, RGD and their 
derivatives, p15, and growth factors such as REDV and 
VAPG have been widely used to enhance vascular graft 
endothelialization [59–63]. Among them, p15 is a colla-
gen mimetic peptide that could significantly promote ECs 
adhesion and proliferation but are less effective for SMC 
adhesion and proliferation. In our recent work, p15 was 
conveniently conjugated onto the surface of POC-click 
films or scaffolds through SPAAC [70–73]—a copper-free 
click reaction. The p15-conjugated POC-click films showed 
much better HUVEC adhesion and proliferation properties 
compared to untreated POC-click films.

As mentioned earlier, NO plays an important role in car-
diovascular application in prevention of SMC proliferation 
and stimulation of EC proliferation. Two different kinds of 
NO-releasing poly(diol citrate) elastomers, NO-releasing 
POC- and PDDC-DA (Table 16.1, Figure 16.8a), were devel-
oped by introducing NO-binding diol into pre-poly(diol ci-
trates) and NO treatment after thermo-cross-linking [43–45]. 
Long-lasting NO-releasing poly(diol citrate) elastomers were 
developed by blending miscible diazeniumdiolated NO do-
nors with photo-cross-linkable poly(diol citrates) followed 
by photo-cross-linking (Table  16.1 and Figure  16.8b) [41]. 
NO-releasing POC-DA was shown to release NO for 3 days 
in vitro and significantly reduce neointimal hyperplasia when 
implanted in a rat carotid artery injury model as a perivas-
cular wrap. By using miscible diazeniumdiolated NO donor 
blended with rapidly photocurable methacrylated poly(diol 
citrates) (MA-POC or MA-PDDC), a longer duration of NO 
release for at least 1 week was achieved. The NO-releasing 
elastomers may be useful in the prevention of restenosis and 
thrombosis after vascular interventions such as balloon angio-
plasty, stent deployment, bypass grafting, and other blood-
contacting surface of implant devices.

16.3.1.3  The Use of CABEs As a Vascular  
Graft Coating

ePTFE have been used in large-diameter (>6 mm inner 
diameter) blood vessel application. Their use in small-
diameter blood vessels has been limited due to early graft oc-
clusion from thrombosis. Yang et al. has demonstrated that 
the modification of ePTFE vascular grafts with POC, via a 
simple spin-shearing method followed by in situ interfacial 
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thermo-cross-linking, can improve the biocompatibility of 
ePTFE without affecting its graft compliance [17]. The POC 
interface conferred to the ePTFE grafts increased hydro-
philicity, reduced thrombogenicity, facilitated graft endo-
thelialization in vitro, and reduced macrophage infiltration 
in vivo. POC-coated ePTFE grafts were also implanted into 
the iliac artery in a porcine model. These grafts were found 
to dramatically inhibit platelet adhesion, aggregation, and 
activation compared to the ePTFE graft controls. This he-
mocompatibility may be explained by the anticoagulant and 
calcium-chelating properties of citrate, one of the compo-
nents of POC, and the preservation of the fibril and node 
network of ePTFE. Moreover, POC supports the differentia-
tion of peripheral progenitor cell into ECs, a model further 
characterized by Allen et al. [110]. Overall, POC was sup-
ported from the data to be used as a nonthrombogenic and 
biocompatible versatile coating, which can be widely used 
to improve blood-contacting devices.

16.3.2  Orthopedic Applications

16.3.2.1  Bone Tissue Engineering

Bone is a distinctive and dynamic tissue of the skeletal sys-
tem that continually undergoes a coupled remodeling pro-
cess defined by osteoclast bone resorption followed by new 
bone formation produced by osteoblasts [115]. Despite the 
capacity of the human skeletal system to rejuvenate itself, 
over 2.2 million bone-grafting procedures are performed 
annually worldwide to treat orthopedic pathological condi-
tions such as fractures, tumor resections, and osteoporosis 
[116]. In fact, the bone has become the second most trans-
planted tissue in the world, and over 28 billion dollars per 
year was spent in total orthopedic medical costs, which are 
projected to significantly increase for the next decades with 
the demands of an aging population [117]. Autografts and 
allografts remain the gold standard for graft materials, but 
are unable to fulfill the increasing clinical demands for an 
effective off-the-shelf bone graft due to their limited avail-
ability, complications from donor site morbidity, and pos-
sible risk of pathogen transmission [118–120]. Synthetic 
counterparts are not impeded by these issues but are lim-
ited by their inability to provide mechanical compliance 
and mimic the native composition of bone tissue, which is 
composed of a 70% carbonated HA embedded in a type I 
collagen matrix [121]. While the incorporation of ceramic 
particles has been shown to improve the mechanical proper-
ties of and bone formation onto synthetic polymers, a limit 
in the amount of total ceramic that can be incorporated 
into the composite, significant inflammatory responses, 
long degradation times, and poor bone integration is a ma-
jor roadblock for these materials [122–125]. For example, 
PLA-hydroxyapatite (PLLA-HA) composites can only in-
corporate a maximum of up to 30 wt% HA to avoid brittle-

ness and can take up to 5 years to fully degrade, which leads 
to insufficient bone regeneration, significant inflammation, 
and poor mechanical integration. Therefore, the search for 
a suitable bone tissue-engineered substitute that can match 
the native composition of bone, provide adequate mechani-
cal properties, minimize inflammatory responses, quickly 
induce bone regeneration, and fully integrate with the sur-
rounding tissue within a year of implantation remains a sig-
nificant challenge.

Citrate is traditionally known as an intermediate of the 
Krebs cycle (TCA cycle) for eukaryotic energy production. 
Previous studies have shown that a majority of the body’s 
citrate content is located in skeletal tissues, and plays a 
large role in metabolism, calcium chelation, HA formation, 
and regulation of the thickness of bone apatite structure 
[30–33]. More recently, a careful solid-state nuclear mag-
netic resonance (NMR) study revealed that the surface of 
apatite nanocrystals is abundantly studded with strongly 
bound citrate molecules [33]. Citrate not only functions as 
a dissolved calcium-solubilizing agent but also is a strongly 
bound and integral part of the bone nanocomposite. Citrate 
also has a unique and innate ability to induce HA formation 
in SBF [34]. Surprisingly, the role of citrate is rarely men-
tioned in the literature related to bone development in the 
past 30 years including those on bone tissue engineering. 
The natural existence of citrate in bone and its importance 
in bone physiology hints that citrate should be considered in 
orthopedic biomaterial and scaffold design.

16.3.2.1.1  Prefabricated Implantable Bone  
CABE/HA Composites

In 2006, Qiu et  al. first reported the development of a 
bioceramic-elastomer composite based on the citrate-
based POC and HA (POC-HA) [35]. It was believed that 
the pendent carboxyl groups of POC could potentially aid 
in calcium chelation to facilitate polymer/HA interaction 
[34,37,126,127]. This improved calcium chelation result-
ing in POC-HA’s ability to incorporate up to 65 wt% HA in 
POC-HA composites, which is not possible for traditional 
biodegradable lactide-based polymers (≤30 wt% HA). The 
enhanced amount of incorporated bioactive ceramic maxi-
mized the osteointegration of the material while maintain-
ing suitable degradability [35]. The POC-HA composite 
successfully induced surface mineralization after 15 days of 
incubation in SBF and displayed favorable primary human 
osteoblast cell adhesion in vitro. POC-HA disks implanted 
into rat medial femoral condyles displayed no chronic in-
flammation and were well integrated with the surrounding 
cartilage along with mineralized chondrocytes located im-
mediately adjacent to the implant after 6 weeks of implanta-
tion, which suggests healthy and normal bone remodeling. 
The composites also displayed good processability, giving 
them the potential to be machined and molded into bone 
screws for bone fixation applications [35].
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Although POC-HA displayed excellent biocompat-
ibility, osteoconductivity, and osteointegration in  vivo, 
none of the investigated formulations containing other 
polymer/HA composites could provide sufficient me-
chanical strength to match that of human cortical bone 
[123–125,128]. To improve upon the mechanical strength 
of the previously reported POC-HA composites, we have 
recently developed a new generation of citrate-based 
polymer blend HA composite (CBPBHA) based on POC, 
CUPE [19,129], and HA. Both CUPE and POC are ci-
trate-based cross-linkable polyester elastomers where 
CUPE is a urethane-doped version of POC. Although 
the urethane (urea)-doping chemistry sacrifices available 
OH and COOH groups in the final polymers due to the 
reactions between diisocyanates (like HDI) with OH 
and that with COOH, CUPE is almost 30 times stronger 
than POC [19,129]. We initially expected to make stron-
ger bone composite materials using CUPE alone with HA 
compared to POC-HA; however, the reduced available 
free COOH and OH in CUPE may affect the polymer’s 
ability to chelate with calcium-containing HA particles, 
thus influencing the material mechanical properties 
[37]. Therefore, our strategy for improving the mechani-
cal strength of POC-HA was to fabricate polymer blend 
HA composites by blending the COOH-rich POC with 
the mechanically strong CUPE to composite with HA in 
hopes of achieving optimal polymer/HA interactions and 
enhanced mechanical properties.

CBPBHA networks composed of 90% CUPE and 10% 
POC produced materials with a compressive strength of 
116.23 ± 5.37 MPa, which falls within the range of human 
cortical bone (100-230 MPa) and is a significant improve-
ment over POC-HA composites. CBPBHA promoted 
in  vitro mineralization and increased C2C12 osterix 
(OSX) gene and alkaline phosphatase (ALP) gene expres-
sion in  vitro. After 6-week implantation in a rabbit lat-
eral femoral condyle defect model, CBPBHA composites 
elicited minimal fibrous tissue encapsulation and were 
well integrated with the surrounding bone tissues. The 
promising results in the preceding text prompted an inves-
tigation on the role of citrate supplementation in culture 
medium for stem cell and osteoblast culture. The results 
showed that citrate media supplementation in vitro accel-
erated both mesenchymal stem cell and MG-63 osteoblast 
phenotype progression and promoted calcified matrix 
formation by bone marrow stromal cells. Future studies 
will focus on further understanding the role of citrate in 
culture medium for bone stem cell differentiation and op-
timize the citrate contents in polymer/HA composites for 
orthopedic applications. CBPBHA composites represent 
a new generation of bone biomaterials that address the 
critical issues such as inflammation, osteoconductivity, 
and osteointegration.

16.3.2.1.2  Injectable Bone Composites

To expand the application of CABEs to bone tissue engineer-
ing, Gyawali et al. set out to develop an injectable, porous, 
and strong citric acid-based composite [38], which could 
be used as a delivery vehicle for cells and drugs in bone tis-
sue engineering applications. PEGMC was combined with 
various percentages of HA to create PEGMC-HA compos-
ites with the help of PEG diacrylate (PEGDA) as an addi-
tional cross-linker and bicarbonates that can react with the 
pendent carboxylic acid groups on PEGMC to form CO

2
 

gas, which then forms pores to create an injectable porous 
bone material. The degradation profiles for PEGMC-HA 
networks showed increasing mass loss with lower concen-
trations of incorporated HA. The mechanical compressive 
tests showed that the PEGMC-HA networks were elastic 
and achieved complete recovery without any permanent 
deformation under cyclic load in both hydrated and dry 
conditions. Human fetal osteoblasts (hFOB 1.19) encap-
sulated in PEGMC-HA hydrogel composites were viable 
and functional over a 21-day culture. ECM production was 
measured by the total ALP and calcium content. The results 
show that both increased after 3 weeks of culture. Scanning 
electron microscopy (SEM) and energy dispersive X-ray 
analysis of the constructs showed that the PEGMC-HA 
films were covered with small cauliflower-shaped mineral-
ized structures after 7 days of incubation in SBF. The pres-
ence of pendent groups in the PEGMC polymer allows for 
easy modification through the bioconjugation of biological 
molecules such as type I bovine collagen and resulted in 
enhanced cellular attachment and proliferation at the end of 
day 7 of subculture. An ex vivo study on a porcine femoral 
head demonstrated that PEGMC-HA is a potentially prom-
ising injectable biodegradable bone material for the treat-
ment of osteonecrosis of the femoral head. Unlike many 
injectable systems, PEGMC-HA composites could also be 
fabricated into highly porous architectures from gas-foam-
ing techniques in situ after injection into the implant site 
and can also be used to deliver therapeutics, as shown in 
the controlled release profiles using bovine serum albumin 
(BSA) as a model drug. Thus, unlike previous injectable 
materials, PEGMC-HA composites show great potential as 
an injectable, porous, and strong cell/drug delivery system 
for orthopedic applications.

16.3.2.2  Cartilage Tissue Engineering

Osteoarthritis is a joint disease that affects more than 
20 million people in the United States and is characterized 
by articular cartilage degeneration, which ultimately leads 
to complete loss of cartilage tissue at the joint surface. For 
professional athletes and those over the age of 65, osteoar-
thritis is one of the most frequent causes of physical dis-
ability [130]. Due to the very limited capacity for cartilage 
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regeneration and the varying success of techniques to repair 
damaged cartilage such as mosaicplasty and autologous 
chondrocyte implantation, the treatment of osteoarthritis 
and cartilage injuries has been a major challenge to orthope-
dic research [131–133]. Recent efforts in tissue engineering 
have focused on creating cartilaginous tissues in vitro for 
subsequent transplantation. However, cells grown in  vitro 
under static conditions may not display the normal physi-
ological function as cells located in the dynamic in vivo en-
vironment. In attempts to increase the quality of engineered 
constructs, cell-seeded scaffolds are often subjected to ex-
ternal mechanical stimuli in the form of cyclic compression 
and shear forces to mimic natural joint movement, which 
have been shown to be important in maintaining the homeo-
stasis of cartilage glycosaminoglycan (GAG) and collagen 
formation [134,135]. Unfortunately, currently used materi-
als for scaffolds in chondrocyte mechanical regimens have 
limited strength and elasticity and are prone to elastic defor-
mation after cyclic compressive strains [136–138].

In 2006, Kang et al. published a study to address the lim-
itations of the previous materials and assessed whether POC 
would be a suitable material to engineer elastomeric scaf-
folds for cartilage tissue engineering [139]. In this study, the 
authors fabricated porous POC scaffolds via a salt-leaching 
technique and characterized the POC scaffolds’ ability to 
support chondrocyte attachment, proliferation, matrix syn-
thesis, and cell differentiation. POC scaffolds were com-
pared to 2% agarose, 4% alginate, nonwoven PGA, and 
nonwoven PLGA meshes in terms of recovery ratio. Of all 
the materials tested, only POC was able to display a 100% 
recovery ratio. The GAG and collagen content of chondro-
cytes cultured after 28 days on POC scaffolds was 36% and 
26%, respectively, of those values found in bovine knee 
cartilage explants. Histology and immunohistochemistry 
evaluations confirmed that chondrocytes were able to attach 
to the pore walls within the scaffold, maintain their cell phe-
notype, and form a cartilaginous tissue during the 28 days 
of culture [139]. In summary, POC’s elastomeric qualities 
showed potential as a biodegradable scaffold, which long-
term cyclic and shear strains can be applied to in vitro to 
increase the GAG and collagen content of tissue-engineered 
cartilage. In addition, the elastomeric properties of POC 
constructs may be better suited to appropriately transfer lo-
cal compression and shearing forces produced by joint mo-
bilization to enhance in vivo cartilage regeneration.

In 2010, Jeong et al. published a study to compare the 
performance of chondrocyte-seeded scaffolds made of 
similar architectures to determine the influence of material 
on in vitro cartilage regeneration [140]. Three-dimensional 
scaffolds of the same design were fabricated using PCL, 
poly(glycerol sebacate) (PGS), or POC, and tissue regen-
eration was characterized by cell phenotype, cellular pro-
liferation and differentiation, and matrix production. The 

studies showed that PGS was the least favorable material 
for cartilage regeneration as determined by the high de-
differentiation (Col1), hypertrophic mRNA expression 
(Col10), and high matrix degradation (MMP13 and MMP3) 
results. Although a majority of the cells seeded on PCL re-
mained on the scaffold periphery, the PCL scaffolds showed 
moderate cellular activity but still caused dedifferentiation 
(Col1) of chondrocytes within the scaffold. Interestingly, 
POC provided the best support for cartilage regeneration 
with the highest tissue ingrowth (cell penetration), matrix 
production, relative mRNA expressions for chondrocyte 
differentiation (Col2/Col1), and DNA and sGAG content 
after 4 weeks of culture. This study demonstrates that POC 
can outperform other biodegradable elastomers for cartilage 
tissue engineering and warrants further in vivo studies.

16.3.3  Bioimaging and Drug Delivery

BPLPs are the first aliphatic BPLPs reported, which was 
developed in Dr. Yang’s Lab based on biocompatible mono-
mers, including citric acid and amino acids [20]. The BPLPs 
were synthesized simply by a polycondensation reaction of 
diol, citric acid, and α-amino acid [20,48]. The synthesis 
route is very versatile, as both organic solvent-soluble and 
water-soluble BPLPs (WBPLP) could be prepared by us-
ing OD and PEG, respectively. All the 20 natural amino 
acids and some unnatural amino acids have been used to 
create completely degradable polymers with intrinsic and 
tunable fluorescence. The backbone of BPLPs consists 
of ester bonds, which can be hydrolyzed in physiological 
conditions, and both BPLP and its degradation products 
are biocompatible since all the three monomers are natu-
ral or FDA-approved. The unique characteristics of BPLPs 
eliminated the long-term concern of fluorescent dyes and 
inorganic QDs, as well as their conjugation difficulties [21].

Most notably, BPLPs exhibited extraordinary fluores-
cence properties [20,141]. First, using different amino acids, 
BPLPs can emit fluorescent light from blue to near-infrared 
range (up to 825 nm for BPLP with α-methyl serine). Thus, 
BPLPs are available for both in vitro and in vivo imaging 
applications. Second, unlike traditional organic dyes, such 
as rhodamine B, BPLPs displayed less photobleaching be-
havior. After 3 h continuous UV excitation, BPLP-Cys only 
lost less than 2% of fluorescence intensity, which is signifi-
cantly less than that of rhodamine B (10% loss). Third, the 
quantum yield of BPLPs is exceptional high. For instance, 
BPLP-Cys has a quantum yield of 62.3%, which is much 
higher than that of CdTe/ZnS QDs (20%) [142] and even 
higher than that of most organic dyes [143] and green fluo-
rescent protein (GFP) [144]. These advantages of BPLPs 
probably result from a unique fluorescence mechanism, al-
though it has yet to be fully understood. As Zhang et  al. 
suggested [21], a six-member ring on the side of citrate 
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backbone is the possible fluorophore of BPLPs. The long 
polymer chain makes the six-member ring into a planar 
conformation, resulting in photoluminescence without a 
large conjugated structure.

With the versatility of their molecular design, BPLPs 
have been fabricated into films, porous scaffolds, nanopar-
ticles, micelles, and nanogels [20,21,141]. After thermo-
cross-linking, BPLPs can be cross-linked into elastic films, 
which can be applied as medical implants. Porous tissue 
engineering scaffolds have also been prepared simply by 
salt-leaching after thermo-cross-linking. Subcutaneously 
implanted BPLP films and scaffolds can be observed by 
in vivo fluorescent imaging system (Figure 16.9). Recently, 
the fluorescence emission is a new candidate to monitor the 
scaffolds in  vivo noninvasively [145]. BPLPs could help 
patients and doctors to locate the material better and later 
envision the erosion and performance simply by fluorescent 
imaging. Moreover, BPLP nanoparticles have been easily 
fabricated by nanoprecipitation or single/double emulsion 
approaches. Intratumor and intravenously injected BPLP 
nanoparticles were captured by in  vivo fluorescent imag-
ing system (Figure 16.9), indicating that these nanoparticles 
are potentially available for cancer diagnostics [141]. By 
adding maleic acid into the chain of WBPLP, photo-cross-
linked WBPLP nanogels were also created [146]. BPLP 
nanoparticles and WBPLP nanogels do not need further 
fluorescent dye coating or conjugating to perform ther-
anostic nanomedicine since they can emit intrinsic fluo-
rescence and encapsulate drugs. In addition, multimodal 
imaging is an emerging area, since it could lead to a faster, 
higher-resolution, and deeper visualization by using sev-
eral imaging approaches at the same time [147]. Wadajkar 
et al. utilized both oil-soluble BPLPs and WBPLPs to coat 
magnetic nanoparticles via double emulsion methods [148], 
the resulting core-shell nanoparticles showed dual-imaging 

(fluorescent imaging and MRI) capabilities after uptake by 
prostate cancer cells. It is also interesting that different can-
cer cells (PC3 and LNCaP cells) exhibited selective uptake 
behavior based on hydrophilicity/hydrophobicity of the par-
ticle surface.

Recently, our lab extended the BPLP class by doping the 
polymer with urethane segments [48]. The newly developed 
urethane-doped biodegradable photoluminescent polymers 
(UBPLPs) possess soft but strong mechanical properties 
that are suitable for off-the-shelf vascular grafts. Inherited 
from BPLPs, UBPLPs also showed strong manageable 
fluorescence. Unlike BPLPs, the chain-extended UBPLPs 
had controlled drug release profiles and better mechanical 
performance due to the modified polymer structure.

Overall, citrate-based photoluminescent biodegradable 
polymers are a novel class of polymers that are biocom-
patible, biodegradable, and promising for in  vivo fluores-
cent imaging applications. BPLPs have the potential to 
conquer current challenges of biomedical materials in tis-
sue engineering, drug delivery, and molecular imaging ar-
eas. Current and future research will be focused on further 
exploring the fluorescent mechanism and developing new 
polymers with better fluorescent and biological properties 
to meet clinical requirements. In addition, expanding the 
family with copolymerization, for instance, with polylac-
tide, and creating polymer/inorganic hybrid materials for 
more medical applications will be another direction for the 
promising future of BPLPs.

16.3.4  Tissue Bioadhesive

Employing catechol chemistry, a novel family of biode-
gradable and strong wet-tissue adhesives, iCMBAs, was 
developed in our lab by introducing dopamine into the 
pendent groups of PEGC [22,23]. iCMBAs are superior to 

FIGURE 16.9  (a) Fluorescent image of BPLP-Ser nanoparticles injected subcutaneously in a nude mouse; (b) fluorescent image of BPLP-Ser porous 
scaffold implanted subcutaneously in a nude mouse [21].
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other PEG-based mussel-inspired bioadhesives in terms of 
cost-effective synthesis process and readily biodegradable 
properties [22]. Exhibiting excellent in  vitro and in  vivo 
cytocompatibility, iCMBAs also showed 2.5-8.0-fold 
stronger wet-tissue adhesion strength over clinically used 
fibrin glue, tunable degradability, and tissue-like elasto-
meric mechanical properties. Otherwise, iCMBAs were 
able to stop bleeding instantly and suturelessly and close 
the wound models (2 cm long and 0.5 cm deep) created on 
the backs of SD rats, which are impossible using the exist-
ing gold standard, fibrin glue, due to its weak tissue ad-
hesion strength. Equally important, iCMBA bioadhesives 
facilitate wound healing and are totally biodegradable and 
absorbable without eliciting significant inflammatory re-
sponse. All the results support that iCMBA is highly trans-
lational and could have broad impact on surgeries where 
surgical tissue adhesives, sealants, and hemostasis are 
needed.

16.3.5  Other Applications

16.3.5.1  Cell and Drug Delivery

Many tissue engineering designs using injectable, in situ 
forming systems have been reported with many advan-
tages over previous methods. Unlike tissue engineering 
approaches that utilize prefabricated scaffolds, injectable 
systems have gained increasing interest as a unique method 
for delivering biomaterials into difficult to reach areas of 
the body using minimally invasive procedures. They also 
show the ability to fill and conform to any shape irrespec-
tive of the defect geometry. Furthermore, injectable systems 
can be used as fillers to reinforce the mechanical properties 
of diseased/injured tissue and as a competent carrier of cells 
and therapeutic agents such as drugs and growth factors 
[149–151]. Unfortunately, previous citrate-based compos-
ite designs required the use of organic solvents for material 
processing and harsh processing temperatures (>80 °C) for 
network formation, rendering them unable to be used in in-
jectable strategies.

To overcome this limitation, Gyawali et al. recently de-
veloped a new family of in situ cross-linkable citrate-based 
polymers that can be dissolved in water and cross-linked 
through free radical polymerization methods based on 
double bond-containing PEGMC to avoid the use of harsh 
processing conditions required by the previous designs. 
Free radical cross-linking allowed for the preservation of 
valuable carboxyl and hydroxyl groups derived from cit-
ric acid, which could later be used to conjugate bioactive 
molecules into the bulk material to control cell behavior 
[20]. To ensure that cells and sensitive drugs/factors could 
be incorporated and delivered to the injury site, PEGDA 
and/or acrylic acid monomer was introduced into the sys-
tem to create a cross-linked network with PEGMC [27].  

These new citrate-based polymers could easily be injected 
and cross-linked through free radical polymerization. 
Cyclic conditioning tests showed that PEGMC networks 
possess a maximum tensile strength of 638 kPa with a 
corresponding elongation at break of 723%. In addition, 
PEGMC hydrogels could be compressed up to 75% strain 
without permanent deformation and with negligible hys-
teresis. PEGMC hydrogels also supported the encapsu-
lation and proliferation of NIH 3T3 and human dermal 
fibroblasts. The cytotoxicity of the degradation products 
was comparable to the PEGDA [27]. The pH-sensitive and 
controlled drug release using BSA as a drug model demon-
strated that PEGMC hydrogel has the potential to be used 
as a suitable drug delivery vehicle. In addition, PEGMC 
hydrogels caused minimal inflammation and were fully 
degraded without chronic inflammation or changes in his-
tology within 30 days in a rodent subcutaneous model. In 
conclusion, PEGMC materials were synthesized in a con-
venient, one-pot reaction and demonstrated excellent in-
jectability, in situ cross-linking, adequate functionalities, 
elastic mechanical properties, and controlled degradability. 
Collectively, the development of these platform biomateri-
als for injectable tissue engineering adds new members of 
CABE family and presents unique opportunities for many 
biomedical applications such as drug delivery and orthope-
dic tissue engineering.

16.3.5.2  Endoscopic Mucosal Resection

Gastrointestinal (GI) cancers frequently occur in indus-
trialized countries with new cases of esophageal, gastric, 
and colorectal cancers affecting 3.60%, 11.4%, and 30.1%, 
respectively, of the developed world’s population in 2008. 
The early stages of GI cancers (mucosal dysplasias or can-
cers) exhibit nonspecific symptoms, making them difficult 
to diagnose. This usually results in the majority of cases 
being diagnosed at advanced stages when bleeding, pain, 
or obstructions have already occurred resulting in 5-year 
survival rates below 30% [152,153]. Endoscopic mucosal 
resection (EMR) is a minimally invasive endoscopic proce-
dure developed to remove dysplastic and malignant lesions 
limited to the mucosa and top part of the submucosal layer 
of the GI tract. Originally, EMR was accomplished by me-
chanical separation of the mucosal layer from the underly-
ing muscle. However, perforation, bleeding, and damage to 
the muscle layer remained common occurrences. The cur-
rent clinical approach to minimize EMR-associated compli-
cations is to inject a solution within the submucosal layer, 
which physically separates the diseased mucosal strata and 
provides a “safety cushion” for the subsequent underlying 
muscle layers [154].

Despite the recent advancements in the field, EMR has 
been historically limited by the available injection solu-
tion materials, which have been constrained by two design 
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avenues: the osmolarity and viscosity of a solution are re-
sponsible for the lifting properties of EMR materials [155]. 
Saline is the most commonly used in clinic and is consid-
ered the “gold standard” due to its biocompatibility, low 
cost, and ease of use. However, it suffers from quick dis-
sipation and requires repeated injections resulting in surgi-
cal difficulties. In order to achieve greater lift heights with 
longer lift durations, higher viscosity compounds such as 
sodium hyaluronate and fibrinogen have been employed. 
Sodium hyaluronate is currently being studied as a standard 
for comparing new compounds owing to its relative ease 
of injection and high viscosity, which results in better sub-
mucosal lift. However, the high cost of naturally derived 
solutions such as sodium hyaluronate and fibrinogen has 
prevented their large-scale use [155].

Albeit significant inroads have been made in viscous 
EMR solutions, a paradigm shift has been made toward the 
development of solutions, which rely on gel formation to 
create improved tissue elevation heights with extended lift 
durations. For example, photo-cross-linkable chitosan and 
thermoresponsive polymers have been recently reported 
for EMR with great enthusiasm [156,157]. Although these 
materials are widely available and have shown promise in 
creating adequate submucosal elevation heights and pro-
longed lift durations, there are inherent limitations to these 
approaches such as complex preparatory requirements and 
administration difficulties. Material transformation from a 
liquid to a gel state using photoinitiated free radical polym-
erization methods requires the use of an ultraviolet light, 
which may be difficult in hard-to-reach areas and is not 
widely applicable in conjunction with the current clinically 
used endoscopic tools. Thermoresponsive polymers utilize 
a liquid to gel transition when the temperature of the system 
is raised toward body temperature. Although this gel for-
mation does not require the use of an ultraviolet light, the 
potential for clogging inside long delivery tools is common.

To address all the concerns of the current EMR solu-
tions, Tran and Yang reported the use of a citrate-based 
injectable material to aid in EMR procedures and deliver 
therapeutics to the resected tissue [158]. This was the first 
injectable drug-eluting elastomeric polymer (iDEEP) sys-
tem based on PEGMC and therapeutic rebamipide, which 
is a mucosal protective and ulcer-healing drug that stimu-
lates prostaglandin generation and improves the speed of 
ulcer healing to aid in the management of EMR-induced 
damages [159]. PEGMC formulations used in this study 
demonstrated a tunable transition from a viscous flow-
able liquid into a cross-linked soft biodegradable hydrogel 
within 5 min. iDEEP-A component (composed by dissolv-
ing PEGMC, PEGDA, and tetramethylethylenediamine 
[TEMED, catalyst] in water), which is more viscous than 
saline, remained a viscous liquid until combined with the 
water-soluble iDEEP-B component (ammonium persulfate 
[redox initiator] in water) to produce a soft biodegradable 

hydrogel. Dividing the system into two separate compo-
nents offers a huge advantage over previous designs in that 
the surgeon can precisely control the gel setting location 
and time, which avoids premature gelling inside the delivery 
tools. In addition, the utilization of a redox-initiated cross-
linking mechanism does not require the use of additional 
equipment such as a UV light for the gel formation to occur.

The in vitro drug release profile studies of iDEEP hy-
drogels using rebamipide displayed an initial burst release 
followed by a sustained release for up to 2 weeks and could 
be controlled through polymer/monomer ratios. To charac-
terize ex vivo submucosal lift, the upper third portions of 
porcine stomachs were injected with saline, sodium hyal-
uronate, and iDEEP; the results showed that all submucosal 
cushions created with iDEEP were more durable than those 
performed with saline and sodium hyaluronate at all time 
points. No significant changes in iDEEP cushion height 
were observed after 5 min due to gel formation. To evaluate 
the efficacy of iDEEP, standard EMR procedures were per-
formed in vivo using a live porcine stomach model. iDEEP-
A was easily injected using standard delivery tools and was 
able to create an adequate submucosal cushion. Using the 
same injection needle, an iDEEP-B solution was then in-
jected into the same location without any clogging inside 
the delivery tool. After 5 min of iDEEP-B injection, the en 
bloc resection of the elevated mucosa revealed a soft biode-
gradable gel underneath the mucosa to provide protection 
for the underlying muscle layer from electrocautery dam-
age. Although the iDEEP gel cannot be removed entirely 
following the EMR procedure, the remaining material can 
be used to deliver therapeutics. In addition, previous small 
animal studies have shown complete biodegradation of the 
hydrogel, excellent tissue compatibility, and minimal in-
flammation in vivo [27,158].

In conclusion, iDEEP is a cost-effective, readily avail-
able, and easily injectable two-component solution, which 
allows for biodegradable gel formation under the submu-
cosal space without complex administration difficulties 
and can potentially aid in mucosal regeneration through 
controlled therapeutic delivery. These results suggest that 
iDEEP may provide a significant step toward the realization 
of an ideal injection material for EMR. Future studies will 
be dedicated to comparative long-term evaluations in living 
animals with pathological review to confirm the efficacy, 
depth of resection ability, and submucosal regeneration of 
the iDEEP system.

16.3.5.3  Nerve Tissue Engineering

Peripheral nerve injury remains a difficult and challenging 
problem in reconstructive surgery [160]. When the nerve 
defect or “gap” size is smaller than a few millimeters, the 
damaged proximal axonal stump is able to regenerate axo-
nal sprouts toward the distal segment to reestablish motor 
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and sensory function [161]. However, this form of neural 
regeneration does not always result in full functional recov-
ery due to misdirection of the regenerating axons or inap-
propriate target reinnervation [162]. To complicate matters, 
without the presence of specific guidance, nerve ends sepa-
rated by a gap size greater than 1 cm in length generally 
result in the backward growth of axons into the proximal 
nerve stump forming neuromas [163]. To increase the pros-
pects of axonal regeneration and functional recovery, the 
current clinical “gold standard” for large gap repair involves 
the use of nerve autografts, which rely on the premise that 
viable Schwann cells (SC) located in the basal lamina tubes 
release a synergistic combination of growth factors and cell 
adhesion molecules to support and direct oriented axonal 
regeneration [164,165]. Unfortunately, autologous grafting 
is frequently associated with limitations including the need 
for multiple surgeries, donor site morbidity, distal donor site 
denervation, neuroma formation, and the limited availabil-
ity of suitable grafts for harvesting [166].

To address the aforementioned limitations, several labo-
ratories are actively pursuing the development of synthetic 
alternatives to replace nerve autografts in bridging the gap 
between transected nerve ends. Tissue-engineered nerve 
guides (TENGs) are a promising option for large gap nerve 
repair in that they can provide a biodegradable conduit for 
the delivery of therapeutic cell types, mechanical support, 
and chemical stimulation for axonal growth and nerve re-
generation [167,168]. A variety of materials such as collagen 
[169], PLA [170], polyamide [171], poly(phosphoesters) 
[172], and poly(ethylene) [173] have been used with nu-
merous processing strategies including TIPS and injection 
molding [174] techniques to fabricate synthetic alternatives 
to bridge neural defects. Recent years have witnessed the 
development of TENG with increasingly sophisticated and 
intricate internal structures based upon mechanisms of con-
tact guidance and basement membrane microtube theory for 
nerve regeneration, which hypothesize that axon elongation 
requires guidance by contact with the appropriate sub-
strate through topographical control [175,176]. By creating 
longitudinally oriented channels to fill the interior of the 
conduit, novel TENG has been produced to support the sys-
tems’ natural pattern of growth [176]. The multichanneled 
designs are advantageous in that they provide better nerve 
target reinnervation, a greater surface area for cell growth, 
the topography necessary to direct the growth of regenerat-
ing nerve fibers (bands of Büngner), and internal support to 
prevent conduit collapse [162,166–168,177,178].

Our lab has recently developed a novel CUPE-
multichanneled TENG. CUPE is a highly strong, soft, and 
biodegradable elastomer developed in our lab, which has 
shown excellent biocompatibility and hemocompatibility 
[19]. It is expected that a TENG fabricated using CUPE 
will have adequate strength and elasticity to withstand ten-
sion and retain sutures and will be suited for immediate 

implantation. In order to better recreate the native parallel 
channels of nerve basal lamina tubes, we have proposed the 
fabrication of novel porous multichanneled nerve guides 
with the following rationale: (1) a parallel multichannel de-
sign can better mimic the native architecture of nerve basal 
lamina tubes and promote nerve cell alignment through 
contact guidance; (2) the introduction of microporosity 
(<10 μm) between the channels can minimize fibrous tissue 
infiltration, increase permeability for cell-to-cell commu-
nication, and limit cell dispersion to enhance nerve target 
reinnervation; and (3) an outer sheath of the nerve guide 
conduit can provide the necessary mechanical strength for 
surgical implantation.

Porous and elastic CUPE scaffolds were developed for 
peripheral nerve regeneration based on the basement mem-
brane microtube theory and designed with multiple internal 
longitudinally oriented channels as well as an external non-
porous sheath to mimic the native endoneurial microtubu-
lar structure and epineurium, respectively. This fabrication 
technique allows for great flexibility in the scaffold chan-
nel geometry, porosity, and mechanical properties. CUPE-
multichanneled scaffolds displayed an ultimate peak stress 
of 2.83 ± 0.24 MPa with corresponding elongations at break 
of 259.60 ± 21.49 %, which are in the range of native nerve 
mechanical properties. CUPE-multichanneled scaffolds 
were also evaluated in  vivo for the repair of 1 cm rat sci-
atic nerve defects. After 8 weeks of implantation, CUPE-
multichanneled scaffolds compared favorably with nerve 
autograft in terms of fiber density and population.

In conclusion, a novel CUPE TENG consisting of lon-
gitudinally oriented parallel microchannels was fabricated 
using particulate-leaching techniques and evaluated me-
chanically and in vivo for potential use in peripheral nerve 
tissue engineering. The scaffolds were made from CUPE, 
a new type of strong, soft, and hemocompatible biodegrad-
able polyester elastomer. These studies represent the first 
step toward the investigation of the role of scaffold archi-
tecture on the resulting tensile, suture retention, and in vivo 
performance. Using this design, TENG can be produced 
with tunable strength and architecture to fit the needs of a 
particular application. CUPE TENG performed as well as 
nerve autografts in the in vivo evaluation studies.

16.3.5.4  Gene Delivery

In addition to providing a physical substrate for cellular 
growth, tissue-engineered scaffolds should also facilitate 
the delivery of cell-signaling factors in order to repair and/
or integrate with the diseased tissues in the body [179]. 
The delivery of these factors should allow for both short- 
and long-term delivery while allowing control over dosing 
without compromising the biological activity of the fac-
tor. Traditionally, the physical adsorption of a protein onto 
a scaffold followed by the protein release during scaffold 
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degradation has been the primary means to deliver pro-
teins to the surrounding scaffold environment [180,181]. 
Unfortunately, this method does not transfer well to an 
in  vivo setting due to the protein’s short half-life, limited 
loading capacity, and significant loss of activity during en-
trapment. All of these are major limitations in maintaining 
the necessary prolonged therapeutic levels.

An alternative to direct protein delivery is to deliver genes 
encoding for the protein of interest, which will be internal-
ized by the seeded cells and cause the subsequent produc-
tion of the desired protein for extended periods [182,183]. 
In a recent report by Zhang et al., POC was evaluated as a 
scaffold material to facilitate substrate-mediated gene de-
livery [179]. The rationale behind this approach was that 
plasmid DNA (pDNA) in its native form or in complex with 
a cationic polymer such as polyethylenimine (PEI) could be 
physically adsorbed onto the scaffold. PEI has shown the 
ability to disrupt the endosome through the proton sponge 
effect and enhance the efficiency of DNA delivery. The 
results show that polyplex-containing scaffolds showed a 
higher loading and slower initial release rates when com-
pared to naked pDNA-containing scaffolds. HEK293 cells 
and porcine aortic smooth muscle cells (PASMC) seeded 
onto polyplex-loaded POC scaffolds demonstrated cell 
proliferation and transfection for up to 12  days in  vitro. 
However, in vivo studies using a mouse intraperitoneal (IP) 
fat model showed that successful long-term transgene de-
livery was only achieved using naked pDNA-containing 
scaffolds, which was determined by higher levels of both 
luciferase and GFP expression.

Although the in vivo results did not match those of the 
in vitro results, these contradictions were also reported by 
many other groups and may be due to the interactions be-
tween carriers, host tissue, and immunity that cannot be suf-
ficiently mirrored in an in  vitro setting [184]. The results 
demonstrate that POC scaffolds can be a suitable scaffold 
biomaterial for substrate-mediated gene delivery and can 
potentially support the long-term biological cues needed to 
mediate tissue regeneration through nonviral gene delivery.

16.4  CONCLUSIONS

Since the creation of the first and initial citrate-based bio-
degradable elastomers (CABEs), poly(diol citrate) by Yang 
et al. in 2004, benefited from the facile and cost-effective 
synthesis process, available choices of diol comonomers 
(from small diol molecules to macrodiols, from hydrophobic 
diols to hydrophilic ones, and from saturated diols to unsatu-
rated diols), and the multifunctionality of citric acid, CABEs 
have stood out and become an intensively studied and used 
biomaterial among the family of biodegradable polymers.

Citric acid is the key monomer for the design of CABEs 
and their applications. Being a natural metabolite in the body, 
this multifunctional monomer provides rich chemistries for 

the design functional biodegradable elastomers. Citric acid 
not only participates in degradable ester bond formation 
and provides pendent chemistry for biofunctionalization 
(BPLP and iCMBA), being inherent hemocompatible and 
chelating calcium ions to improve polymer/mineral inter-
actions (CABE/HA), but also presents biochemical signals 
and niches to mediate tissue development (citrates in bone). 
CABEs have become an important branch of biodegradable 
polymers.

To meet the diversified needs in biological and biomed-
ical applications, the innovation of CABEs will continue 
with focus on addressing some limitations on mechanical 
properties, degradation, and biofunctionalities required 
by specific applications. For example, wet mechanical 
strengths including adhesion strength (specifically for 
iCMBA) of CABEs should be improved for tissue engi-
neering applications or orthopedic fixation device applica-
tions. Further understanding is needed on the mechanism 
of citrate signals for tissue development, which should be 
instrumental for the design of CABEs that may present 
dynamic citrate signals in response to tissue development 
such as bone regeneration. There is still much to do in the 
design of biodegradable polylactone biomaterials, which 
should constitute the next wave of innovations for CABE 
polymer. Conferring intriguing fluorescent properties to 
polylactones can give a new life to the mature polylactone 
syntheses/technology and will generate significant impacts 
on the fields that have largely benefited from the use of 
biodegradable polylactone materials such as drug delivery, 
biosensoring, bioimaging, cancer nanotechnology, and tis-
sue engineering.
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