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a  b  s  t  r  a  c  t

There  are  many  situations  in  quality  control  of  manufacturing  processes  in which  the  quality  of a  process
is  characterized  by  the  spatial  distribution  of  certain  particles  in  the  product,  and  the  more  uniform  the
particle  distribution  is,  the  better  the quality  is. To  realize  quality  control  and  guide process  improvement
efforts,  the  degree  of  spatial  uniformity  of  particle  distributions  needs  to be assessed.  On  the  other  hand,
many  quantitative  metrics  have  been  developed  in areas  outside  manufacturing  for  measuring  uniformity
of point  patterns,  which  can  be  applied  for this  purpose.  However,  critical  issues  exist  in applying  existing
metrics  for  quality  control  relating  to which  metrics  to  choose  and  how  to  use  them  in  specific  situations.
article distribution
oint patterns
patial uniformity
etal matrix nanocomposite (MMNC)

issue-engineered scaffolds

To provide  general  guidelines  on  these  issues,  this  research  identifies  popular  uniformity  metrics  scat-
tered  in  different  areas  and  compares  their  performance  in detecting  nonuniform  particle  distributions
under  various  practical  scenarios  through  a comprehensive  numerical  study.  Effects  of  different  factors
on the  performance  of  the  metrics  are revealed  and the  best  metric  is found.  The  use and  effectiveness
of  the  selected  metric  is also  demonstrated  in a case  study  where  it  is  applied  to  data  from  emerging
material  fabrication  processes  in nanomanufacturing  and  biomanufacturing.

iety o
© 2012 The Soc

. Introduction

There is an increasing situation in manufacturing processes
here the quality of a process or product is characterized by the

patial distribution of certain particles or components, and the
ore uniform the particle distribution, the better the quality. This

s especially the case in the manufacturing of composites such as
anomaterials and biomaterials. For example, in the metal matrix
anocomposite (MMNC) fabrication processes where nano-sized
eramic particles are embedded into the metal matrix [1,2], a key
uality characteristic is the dispersion of nanoparticles, as shown

n the scanning electron microscope (SEM) image in Fig. 1(a). The
ntroduction of nanoparticles can significantly strengthen the metal

atrix, and the more uniformly the nanoparticles disperse, the bet-
er the composite structure and thus the mechanical properties
f the produced MMNC  material [3].  Another typical example in
iomanufacturing is the fabrication processes of tissue-engineered
caffolds, which are porous polymer matrices serving as tempo-
Please cite this article in press as: Kam KM, et al. On assessing spatial uni
processes. J Manuf Syst (2012), http://dx.doi.org/10.1016/j.jmsy.2012.07.0

ary substrates for cells in developing engineered tissues/organs.
ntroduction on tissue-engineered scaffolds can be found in the
iterature [e.g., 4–6]. Fig. 1(b) shows an SEM image of the cell

∗ Corresponding author. Tel.: +1 817 272 3150; fax: +1 817 272 3406.
E-mail address: lzeng@uta.edu (L. Zeng).

278-6125/$ – see front matter ©  2012 The Society of Manufacturing Engineers. Publishe
ttp://dx.doi.org/10.1016/j.jmsy.2012.07.018
f Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.

distribution in the scaffolds. The uniformity of cell distributions
is highly required to produce homogeneous tissues/organs, which
is, correspondingly, considered as an important quality indicator of
the scaffolds.

To conduct quality control and guide process improvement
efforts in processes like the above examples, the degree of spatial
uniformity of particle distributions needs to be assessed. However,
currently, this is reported subjectively by human operators in most
cases, which is neither convenient nor reliable. Obviously, quanti-
tative metrics are needed to assess the degree of uniformity, and
consistent product quality can be achieved through monitoring
those metrics in the manufacturing process.

Particles like the nanoparticles and cells can be treated as
dimensionless points due to their small sizes compared to the
study regions, i.e., the SEM images, and their distributions are for-
mally referred to as spatial point patterns in the literature [e.g.,
7–9].  Quantifying the uniformity/clustering of point patterns has
been an extensively studied topic in areas such as geological, eco-
logical, environmental, and material science studies, and many
different types of metrics have been developed for typical point
patterns in those areas such as the distribution of certain species of
formity of particle distributions in quality control of manufacturing
18

plants/insects within an interested region or the mixing of different
components in material processing. These metrics can be directly
applied to assess the uniformity of particle distributions in qual-
ity control of manufacturing processes. However, this endeavor

d by Elsevier Ltd. All rights reserved.
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C (a) and cell distribution in tissue-engineered scaffolds (b).
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back is that the spatial information contained in the pattern is lost
since only the counts are used. In addition, the appropriate speci-
fication of the number of quadrats is case specific. Distance-based
methods, illustrated in Fig. 3(b), focus on the distances between

*
rI

II

III
Fig. 1. SEM images of nanoparticle distribution in MMN

s faced with three critical issues: (i) Selection of metrics: little
nowledge on the selection of metrics under specific situations is
vailable in the literature, which makes it very difficult for practi-
ioners in manufacturing to decide the suitable metric to use in their
rocess from the vast pool of available metrics. (ii) Specification of
arameters: the use of uniformity metrics often requires specifying
ome parameters. For example, to decide if the observed patterns
re uniform, a benchmark of uniformity, called critical value in pro-
ess monitoring, should first be established. Also, to use metrics
ased on a division of the study region into small grids, the number
f grids should be determined beforehand. However, there is a lack
f guidance on how to specify such parameters. (iii) Robustness of
etrics: the performance of existing metrics in some special cases

n quality monitoring is unknown. For example, while a large num-
er of points, e.g., several hundreds or more, are often available in
atterns in geological, environmental and material science studies,
atterns with a small number of particles might be a typical situa-
ion in some manufacturing processes. Therefore, it will be helpful
o study the robustness of existing metrics in such cases.

The only effort to address the above issues in the literature is the
tudy by Zhou et al. [10] which compares some uniformity metrics
n assessing nanoparticle dispersion in MMNC  fabrication processes
hrough simulation. However, only a limited set of metrics is con-
idered in that study, and the last two issues are not fully addressed.
his paper will contribute by studying the performance of a broader
et of metrics, encompassing those developed in various areas,
nd providing guidelines on all the three issues. The effects of fac-
ors that may  affect the performance of the metrics are identified,
nd the best metric is found in terms of its performance in differ-
nt scenarios of parameter setting. A case study is also provided
o demonstrate the implementation of the best metric on image
ata from nanocomposite and tissue-engineered scaffold fabrica-
ion processes.

The remainder of the paper is organized as follows. In Section
, a review of the existing methods and metrics for assessing spa-
ial uniformity of point patterns will be presented. Section 3 will
ntroduce the conventional uniformity monitoring procedure in

anufacturing process control practice, and discuss important fac-
ors affecting the performance of the metrics. The results of the
umerical study will be given in Section 4. This is followed by a
ase study in Section 5 and summary in Section 6.

. Methods and metrics for assessing spatial uniformity of
oint patterns

.1. Methods for assessing spatial uniformity
Please cite this article in press as: Kam KM, et al. On assessing spatial uni
processes. J Manuf Syst (2012), http://dx.doi.org/10.1016/j.jmsy.2012.07.0

The basis for spatial uniformity assessment of point patterns
s the concept of complete spatial randomness (CSR) represented
y the pattern in Fig. 2(a), which follows a homogeneous Poisson
Fig. 2. Point patterns.

distribution. Using CSR as a reference, the degree of spatial unifor-
mity of a pattern can be quantified by its departure from CSR, and a
pattern which has a statistically significant departure will be con-
cluded to be nonuniform in quality monitoring. As nonuniformity
in a pattern is typically manifested by the existence of clustering
shown in Fig. 2(b), the degree of uniformity is often inversely rep-
resented by the degree of clustering. Various methods have been
developed to assess uniformity, which differ from each other in
their definition of the departure from CSR and the way to calculate
this departure.

In the high level, the existing methods can be roughly catego-
rized into three classes: quadrat-based methods, distance-based
methods and other methods. As illustrated in Fig. 3(a), quadrat-
based methods, such as those proposed by Fiser [11], David and
Moore [12], Morisita [13], Lloyd [14], Douglas [15], Alemaskin et al.
[16], and Greig-Smith [17], divide the study region into a number of
small grids, called quadrats, and count the number of points falling
into each grid. Consequently, the degree of uniformity can be quan-
tified by the characteristics of these counts such as the parameters
of their empirical distribution. Such methods are very popular in
some areas such as ecological and environmental studies, for their
simplicity and convenience in implementation. Their main draw-
formity of particle distributions in quality control of manufacturing
18

(a) Quadrat methods (b) Distance methods

Fig. 3. Existing methods for assessing uniformity.

dx.doi.org/10.1016/j.jmsy.2012.07.018
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oints, such as those between nearest neighbors or between ran-
omly selected locations (indicated by the asterisk in the figure)
o nearest points, and quantify the degree of uniformity using the
haracteristics of these distances. Cressie [7] gives an excellent
eview of these methods. Compared with quadrat-based methods,
hese methods utilize more spatial information, but choosing the
istances between nearest neighbors instead of those between the
econd, third, etc., nearest neighbors, is arbitrary, as pointed out
y Cressie [7].  They may  also cause the “edge effect” problem when
ome points or the selected location is closer to the edge of the study
egion than to any other points within the region. The methods for
dge effect correction are summarized in Diggle [8].

Other methods for quantifying spatial uniformity include the
ethods based on coordinate projection proposed by Jun et al. [18],

nd Tong et al. [19], and the SADIE (spatial analysis by distance
ndices) methodology developed by Perry and Hewitt [20] and Perry
21]. The projection methods project the coordinates of the points
nto a rotating axis and characterize the clustering of points by the
istances between the projected values. This method is parameter-
ree and convenient, but it requires a relatively large number of
oints in the pattern. The SADIE methodology, originally developed
or quantifying the spatial variation of insect distribution in ecolog-
cal studies, is essentially a hybrid of quadrat and distance methods.
asically, it divides the study region into quadrats and quantifies
he uniformity by measuring the total efforts (in terms of distances

oved), to rearrange the points in different quadrats to create a
attern as uniform as possible. This methodology not only bears
he limitations of quadrat-based methods, but also involves com-
lex optimization algorithms which are not convenient for quality
ontrol in practice. Therefore, the associated metrics will not be
onsidered in this study.

.2. Metrics to compare

Based on the methods described above, many unifor-
Please cite this article in press as: Kam KM, et al. On assessing spatial uni
processes. J Manuf Syst (2012), http://dx.doi.org/10.1016/j.jmsy.2012.07.0

ity/clustering metrics have been developed and widely used in
ifferent areas. Their definitions, formulas and decision rules in
uality monitoring are listed in Tables 1 and 2. Note that in the
decision rule” column, “upper-sided” means that an upper-sided

able 1
uadrat-based metrics for assessing spatial uniformity.

Name Formula 

Index of dispersion ID = (q − 1)s2/x̄

Skewness index SI = q
(q−1)(q−2)

q∑
i=1

(
xi−x̄

s

)3

Moran’s I MI = q

(q−1)s2ω..

q∑
i=1

q∑
j=1

ωij(xi

Geary’s C GC = 1
2s2ω..

q∑
i=1

q∑
j=1

ωij(xi − x

Local  Moran’s I LMI  = max
1≤i≤q

[
q

(q−1)s2 (xi − x̄)
∑

j=

Local  Gi LG = max
1≤i≤q

[
q∑

j=1

ωijxj/

q∑
j=1

xj

Global Shannon entropy GSE = −

[
q∑

i=1

pi log(pi)

]
/ l

Global–local Shannon entropy GLSE = −

[
q∑

i=1

pi log

(
q∑

j=1
 PRESS
ing Systems xxx (2012) xxx– xxx 3

critical value will be applied, i.e., an observed pattern with a met-
ric value larger than the critical value will be concluded to be
nonuniform. Similarly, “lower-sided” and “two-sided” mean that
a lower-sided critical value and two-sided critical values, respec-
tively, will be applied.

2.2.1. Quadrat-based metrics
Table 1 displays the metrics resulted from quadrat-based meth-

ods. The quantity q in the formulas denotes the number of quadrats,
i.e., the number of grids in Fig. 3(a), xi is the count of points in grid
i, i = 1, 2, . . .,  q, and x̄ and s are the sample mean and sample stan-
dard deviation of the counts. These metrics can be further divided
into three groups according to their principles: simple indices based
on empirical distribution of counts (Group 1), spatial autocorrelation
measures (Group 2), and entropic measures (Group 3). The first group
is based on the fact that when the pattern is not uniform, the empir-
ical distribution of the counts {x1, x2, . . .,  xq} will be different from
that under CSR. Correspondingly, the degree of uniformity is quan-
tified by the discrepancy between the distribution of counts and
that under CSR. The second group is based on the fact that when
there is clustering, the counts of grids within spatial vicinity will
bear some correlation instead of being independent under CSR.
Thus, the degree of uniformity is indicated by the degree of correla-
tion between counts of spatial neighbors. The third group is based
on the fact that when the pattern is perfectly uniform, the counts
of different grids will be the same, representing the highest uncer-
tainty of information about the point locations, or the maximal
value of the Shannon entropy. Accordingly, the degree of unifor-
mity can be quantified by the discrepancy between the observed
entropy and the entropy under CSR. More details of these metrics
are provided as follows.

Group 1: Simple Indices based on empirical distribution of counts
• Index of dispersion (ID). This is the simplest and most widely

used metric of spatial uniformity, which concerns variability
formity of particle distributions in quality control of manufacturing
18

of the empirical distribution of counts in the sense that when
there is clustering, this variability will be larger than under
CSR as quadrats near the center of the cluster will contain
more points than others. Therefore, a large value of this index

Decision rule

Upper-sided

Upper-sided

− x̄)(xj − x̄) Two-sided

j)
2 Two-sided

q

1

ωij(xj − x̄)

]
Two-sided]
Two-sided

og(q), pi = xi/

q∑
i=1

xi Lower-sided

ωijpj

)]
/ log(q), pi = xi/

q∑
i=1

xi Lower-sided

dx.doi.org/10.1016/j.jmsy.2012.07.018
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Table  2
Distance-based metrics for assessing spatial uniformity.

Name Formula Functional summary CSR reference Decision rule

F index
∫ D

0
[F̂(r) − FCSR(r)]

2
dr F(r) = P(d ≤ r) d : distance from a selected location to nearest point FCSR(r) = 1 − exp

(
− �r2

total area n
)

Lower-sided

G  index
∫ D

0
[Ĝ(r) − GCSR(r)]

2
dr G(r) = P(d ≤ r) d : distance from a selected point to nearest point GE(r) = 1 − exp

(
− �r2

total area n
)

Upper-sided

J  index
∫ D

0
[Ĵ(r) − JCSR(r)]

2
dr J(r) = 1−G(r)

1−F(r) JCSR(r) = 1 Lower-sided

L  index
∫ D

0
[L̂(r) − LCSR(r)]

2
dr L(r) =

√
N(r)

N(r) : number of points within distance r of a selected point LCSR(r) = r Upper-sided

(r)

2

a
w
t
g

��

g  index
∫ D

0
[ĝ(r) − gCSR(r)]2

dr g(r) =
√

N ′(r)
2�r�

N ′(r) : the derivative of N

indicates nonuniformity or clustering. Under CSR, this index fol-
lows a �2 distribution with (q − 1) degrees of freedom.

• Skewness index (SI). This index is based on a similar idea, that
is, when there is clustering, the count distribution will be biased,
which is indicated by the skewness of the distribution.

Group 2: Spatial autocorrelation measures
• Moran’s I (MI) and Geary’s C (GC). These are the classic measures

of spatial autocorrelation which can be found in Schabenberger
and Gotway [22]. The quantity ωij in the formulas is the neighbor
indicator of grid i and j, and ω.. is the sum of all the neighbor
indicators, i.e.,

ωij =
{

1 if i and j are neighbors

0 if i and j are not neighbors
ω.. =

q∑
i=1

q∑
j=1

ωij

The neighbor indicator can be defined in many ways, e.g., grid
i and j are neighbors if they share a common border. Essentially,
MI and GC are global correlation measures in the sense that they
measure the global degree of correlation among spatial neigh-
bors by averaging the local correlations between neighbors. As
correlation has two directions, positive correlation (i.e., counts
of neighbors are more similar than expected by chance) and
negative correlation (i.e., counts of neighbors are more dissim-
ilar than expected by chance), the decision rule in using these
metrics is two-sided.

• Local Moran’s I (LMI) and Local Gi (LG). To enhance the
sensitivity of clustering detection, local indicators of spatial
autocorrelation (LISAs) have been developed by authors such as
Getis and Ord [23] to measure the degree of autocorrelation at
each single grid, as represented by the quantities in the square
brackets in the formulas. These measures are designed to cap-
ture local clusters or “hot spots”. For quality control purpose, the
maximum of the local measures will be monitored.

Group 3: Entropic measures
• Global Shannon entropy (GSE). This is the commonly used

entropic measure, where pi is the observed probability that a
point falls into grid i. Under CSR, this probability is the same
over all the grids, i.e., pi 1/q, and thus GSE = 1. A small value
of this measure indicates a large departure from CSR, or a low
degree of uniformity. This measure has been applied by Came-
sasca et al. [24] and Alemaskin et al. [25] to assess mixing quality
in material processing.

• Global–local Shannon entropy (GLSE).  Based on the similar idea
as the LISAs, Karlström and Ceccato [26] propose the GLSE which
takes the local information between spatial neighbors into con-
sideration in measuring the entropy.

.2.2. Distance-based metrics
Distance-based methods described in Section 2.1 have produced
Please cite this article in press as: Kam KM, et al. On assessing spatial uni
processes. J Manuf Syst (2012), http://dx.doi.org/10.1016/j.jmsy.2012.07.0

 series of functional summaries of the distances between points
hich are given in the third column of Table 2, where r > 0 denotes

he distance. The corresponding theoretical functions under CSR are
iven in the next column in the table, where “total area” denotes the
gCSR(r) = 1 Upper-sided

total area of the study region, and n is the total number of points in
the observed pattern. Details of these functions are given as follows.

• F function: F(r), represented by case I in Fig. 3(b), is the cumula-
tive distribution function of distances from a randomly selected
location within the study region to its nearest point. Such dis-
tances are often referred to as empty space distances or void
distances.

• G function: G(r), represented by case II in Fig. 3(b), is the cumula-
tive distribution function of distances from a randomly selected
point to its nearest neighbor, called nearest neighbor distances.

• J function: J(r) is a function of F(r) and G(r). Under CSR, F(r) and
G(r) are the same, and thus J(r) is the constant 1.

• L function: L(r), represented by case III in Fig. 3(b), is related
with the ratio of N(r), the number of points within distance r of a
randomly selected point, and the intensity � in the study region.
Under CSR, N(r) = �·�r2, and thus L(r) is r.

• g function: g(r) is called pair correlation function which is related
with the ratio of N′(r), the first derivative of N(r), and r�. It can be
roughly explained as the probability of observing a pair of points
with the given distance r. Under CSR, this probability is the same
for any value of r.

As quality monitoring is typically based on univariate statistics,
single-number summaries of the above functions need to be found.
A common choice is the Cramer–von Mises statistic which meas-
ures the overall discrepancy between the observed function and its
CSR reference∫ D

0

[Ĥ(r) − HCSR(r)]
2
dr

where D is the maximum distance to be considered, Ĥ(r) is the
observed function, and HCSR(r) is the corresponding CSR reference.

2.2.3. Other metrics

• Projection index (PI). The detailed procedure for calculating this
index can be found in Appendix A. Its value under CSR is 1, and
larger values indicate a higher degree of clustering.

3. Uniformity monitoring in quality control of
manufacturing processes

3.1. Uniformity monitoring procedure

Monitoring of spatial uniformity in manufacturing processes is
typically based on image data like the SEM images shown in Fig. 1,
each representing an observed point pattern. The central goal is to
determine whether an observed pattern is uniform or not. For this
formity of particle distributions in quality control of manufacturing
18

purpose, the critical value for the pattern must be first found based
on the statistical (null) distribution of the metric under CSR. Given
the specified type I error probability ˛, the critical value is the 100˛
and 100(1 − ˛) percentile of the null distribution for lower-sided

dx.doi.org/10.1016/j.jmsy.2012.07.018
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Table  3
Scenarios considered in the numerical study.

Characteristics of observed patterns
(1) Average intensity High (100)/low (30)
(2)  Type of nonuniformity Single/Matern/Line I/Line II
(3)  Degree of nonuniformity L5/L4/L3/L2/L1 (serious → weak)

Parameters of metrics
(4) Parameters in calculation q = 9/16/25/36/49 (quadrat

methods)
D = 0.04/0.06/0.08/0.1 (distance

a
o
v
r
s
p

m
h
I
u
[
l
o
n
o
t
b

3

t

(

methods)
(5) Critical value Fixed �/fixed n

nd upper-sided decision rule, respectively. Then the metric value
f the pattern will be calculated and compared with the critical
alue. Decision will be made based on the corresponding decision
ule of the metric. The performance of the monitoring can be mea-
ured by the detection power, i.e., the probability that a nonuniform
attern is correctly detected.

In this study, both the critical value and detection power of each
etric will be determined by simulation. The use of simulations

ere is mainly due to the lack of asymptotics of uniformity metrics.
n fact, simulation methods have been a popular way to evaluate
niformity of spatial patterns which is a very complex phenomenon
8,9]. Specifically, to find the critical value for an observed pattern, a
arge number of CSR patterns will be generated, and the distribution
f metric values for these simulated patterns will be used as the
ull distribution. To evaluate the detection power, a large number
f nonuniform patterns will be generated, and the percentage of
hese patterns that are correctly determined to be nonuniform will
e used as estimate of the detection power.

.2. Factors affecting performance of uniformity metrics

In general, the performance of uniformity metrics is affected by
Please cite this article in press as: Kam KM, et al. On assessing spatial uni
processes. J Manuf Syst (2012), http://dx.doi.org/10.1016/j.jmsy.2012.07.0

wo sets of factors:

1) Characteristics of observed patterns. These include the number
of points in the pattern, type of nonuniformity, and degree of

Fig. 4. Examples of nonuniform patter
 PRESS
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nonuniformity. Patterns with various characteristics may  be
produced in manufacturing processes. For example, the num-
ber of particles may  vary a lot from process to process, and from
image to image; a nonuniform pattern may  contain a single
cluster, multiple clusters or line-shape clusters; and different
degrees of nonuniformity may  be resulted, from very serious
to weak. Accordingly, the performance of metrics should be
evaluated for typical patterns that exist in the practice of man-
ufacturing processes.

(2) Parameters of the metrics. These include the parameters in
calculating the metrics, i.e., the number of quadrats, q, for
quadrat-based metrics and the maximal distance allowed, D, for
distance-based metrics, and the critical value for each observed
pattern in decision making. There are two methods to deter-
mine the critical value, depending on how CSR patterns are
generated in finding the null distribution:

• “fixed �” method: the CSR patterns will be generated from a
homogeneous Poisson distribution with intensity � = n/W, where
n is the number of points in the observed pattern, and W is the area
of the study region. This method is commonly used in testing spa-
tial uniformity, but it may  not work well for some metrics when
the intensity of points in the observed pattern is very small. The
reason is that under a small �, a pattern generated from the homo-
geneous Poisson distribution may  contain a very small number of
points, e.g., below 10, which makes the calculated metrics mean-
ingless or impossible. For example, if a CSR pattern only contains,
say, 3 points, the counts of most grids in Fig. 3(a) will be zero,
and thus the metrics based on the empirical distribution of these
counts does not make much sense.

• “fixed n” method: the CSR patterns will be generated from a Bino-
mial distribution with n points. Intuitively, this is equivalent to
comparing the observed pattern with what it should be if the n
formity of particle distributions in quality control of manufacturing
18

points in it are arranged uniformly. Since this method does not
involve the generation of numbers following a Poisson distribu-
tion, it is easier to implement and does not have the issue when
intensity of points is very small.

ns generated in the simulations.

dx.doi.org/10.1016/j.jmsy.2012.07.018
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. Numerical study

A  comprehensive numerical study is done to evaluate and com-
are the performance of metrics described in Section 2.2.  To show
he effects of factors mentioned in Section 3.2,  different cases
f the observed patterns and settings of metric parameters are
onsidered. The scenario design and computation procedure in
Please cite this article in press as: Kam KM, et al. On assessing spatial uni
processes. J Manuf Syst (2012), http://dx.doi.org/10.1016/j.jmsy.2012.07.0

he simulations will be described in Section 4.1,  specific con-
erns to address in this study will be given in Section 4.2, and
esults will be presented in Section 4.3 and summarized in Section
.4.
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4.1. Scenario design and computation procedure

Table 3 displays the scenarios considered in the simulations.
The area of patterns is set to be 1 × 1 for convenience. The specific
setting of the two sets of affecting factors is as follows:

(1) Characteristics of observed patterns: 2 levels of average intensity,
formity of particle distributions in quality control of manufacturing
18

100 and 30, are considered, representing the cases with a large
and small number of points in each pattern; 4 types of nonuni-
form patterns are considered, as shown in Fig. 4, including the
single-cluster patterns with one single cluster in the center,

b)

d)
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uniformity

 (b); Group 3 (c)), distance-based metrics (d) and projection index (e).
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Matern-cluster patterns with multiple clusters, Type I line pat-
terns with three line-shape clusters, and Type II line patterns
with multiple line-shape clusters. These patterns are popu-
lar in manufacturing practices. For example, the line patterns
are a typical phenomenon in nanocomposite fabrication due
to the intrinsic boundary effect of nanocomposites [3],  while
the multi-cluster patterns are common in scaffold fabrication.
For each type of nonuniform patterns, 5 levels of the degree of
nonuniformity are considered, with a decreasing trend from L5
to L1. Definition of these levels for each type of patterns can be
found in Appendix B.

2) Parameters of the metrics: 5 different settings are considered for
the number of quadrats q, while 4 settings are considered for
the maximum distance D. The two methods, “fixed �” and “fixed
n”, are used to determine the critical values.

In the study, the detection power of each metric under each
cenario in Table 3 is obtained through the following steps:

Step 1: Generate 10,000 patterns under this scenario. The detailed
procedure to generate the patterns is given in Appendix B. Exam-
ples of the generated patterns are shown in Fig. 4.
Step 2: For each pattern, determine the critical value by the chosen
method with Type I error probability  ̨ = 0.05. Then calculate the
value of the metric, and determine if the pattern is uniform by the
decision rules listed in Tables 1 and 2.
Step 3: The detection power is calculated by w/10,000, where w
is the number of patterns among the 10,000 simulated patterns
which are correctly determined to be nonuniform.

.2. Concerns to address

The obtained detection powers will be used to address the fol-
owing concerns

(i) What is the performance of each metric in uniformity monitoring,
and which metric(s) is the best? Since the performance of the
metrics depends on the value of their parameters q or D, the
average and best detection powers over different settings of q
or D will be used in the comparison.

(ii) How robust is each metric to the specification of parameters, and
which metric(s) is most robust? Such robustness is desirable in
practice to provide reliable assessment of uniformity that is
not significantly affected by the specification of parameters.

iii) What are the effects of the characteristics of observed patterns,
i.e., the number of points, and the type/degree of nonuniformity,
on the performance of these metrics? Information on this will
help practitioners to find metrics fitting their process.

iv) What are the effects of the parameters of the metrics on their
performance? In other words, what is the appropriate specifi-
cation of q for quadrat-based metrics and D for distance-based
metrics? Can the “fixed n” method be used instead of the “fixed
�” method in determining the critical values?

.3. Results

.3.1. Average and best performance over different settings of
arameters

Fig. 5 displays the average detection powers of the metrics under
ach combination of type/degree of nonuniformity. Note that each
oint in Fig. 5(a)–(c) is the average over the 5 settings of q, while
Please cite this article in press as: Kam KM, et al. On assessing spatial uni
processes. J Manuf Syst (2012), http://dx.doi.org/10.1016/j.jmsy.2012.07.0

hat in Fig. 5(d) is the average over the 4 settings of D. The projection
ndex in Fig. 5(e) is parameter free, so the points are not averages.
he critical values used in obtaining these results are determined
y the “fixed �” method, and the average intensity of the observed
Degree of nonuniformity

Fig. 6. Average performance of the best metrics in each group (intensity = 100).

patterns is 100. Similar characteristics exist in the results obtained
using the “fixed n” method and patterns with intensity 30.

The performance of quadrat-based metrics is shown in
Fig. 5(a)–(c). In Group 1, the index of dispersion performs signif-
icantly better than the skewness index under all cases. In Group
2, the two  local metrics, LMI  and LG, exhibit better performance in
most cases, and LG is better than LMI. In Group 3, the global entropy
measure works much better than the global–local entropy measure.
Fig. 5(d) shows the performance of distance-based metrics, where
the L index works the best in all cases. The performance of the pro-
jection index shown in Fig. 5(e) is comparable to the L index, but
not so excellent as ID in Fig. 5(a) and GSE in Fig. 5(c).

To see differences among the best metrics in each group (i.e., ID,
LG, GSE, L and PI), their average detection powers are compared in
Fig. 6. It is clear that ID and GSE outperform other metrics uniformly,
with 100% detection power in most cases; the L index outper-
forms the other two  in most cases; and LG and PI are better than
each other in some cases. Between the two best ones, GSE always
outperforms ID, except bearing a slightly worse but still excel-
lent enough detection power for weakest single-cluster patterns.
Overall, we can conclude that GSE is the best in terms of average
performance.

Fig. 7 shows the best detection powers of the metrics over differ-
ent parameter settings. Note that the settings of q or D that achieved
the best performance might be different under different scenarios.
For example, for the local Moran’s I index in Fig. 7(b), q = 49 is the
best setting for the cluster patterns, while q = 9 is that for the line
patterns. Again, the conclusion is that GSE is the best metric.

4.3.2. Robustness to parameter specification
The robustness of a metric to parameter specification, i.e., the

setting of q for quadrat-based metrics and that of D for distance-
based metrics, is inversely indicated by the variability of the
detection power of this metric over different settings of the param-
eters. As there are only 5 settings of q and 4 settings of D considered
in the study, the range, i.e., difference between the largest and
smallest detection power over the settings, will be used as the
measure of robustness. Values of this measure are shown in Fig. 8.
Note that the robustness issue does not exist for the parameter-free
projection index.

From Fig. 8(a), we can see that ID is more robust than SI in that
its detection power varies less under different settings of q in most
cases. In Group 2 of quadrat-based metrics, the performance of all
the metrics varies dramatically under different parameter settings,
and the range of detection power of some metrics can be as large
formity of particle distributions in quality control of manufacturing
18

as close to 1 in some cases, meaning that these metrics can detect
nonuniform patterns 100% surely when q is appropriately speci-
fied, but not so at all under other settings of q. In other words,
they are very sensitive to parameter specification. In Group 3, the

dx.doi.org/10.1016/j.jmsy.2012.07.018
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Fig. 7. Best performance of quadrat-based metrics (Group 1 (a); Gro

lobal entropy measure shows a much smaller variability and thus
 much higher robustness than the global–local entropy measure.
he robustness of GSE is even better than ID in Group 1. In Fig. 8(d),
he G index and J index are the ones with the best robustness to
he specification of D among distance-based metrics, but in most
cenarios, they are not so robust as GSE. Overall, GSE is the most
obust metric to parameter specification.

.3.3. Effects of characteristics of observed patterns
The effects of the characteristics of observed patterns on the

erformance of these metrics can be seen from Figs. 5–7.  To make
he features clearer, the average performance of the best metrics
n each group when the intensity of the patterns is 30 is given in
ig. 9, which is the counterpart of Fig. 6 where the intensity is 100.
he following are the findings from the results in Figs. 6 and 9:

1) Effect of the number of points.  For patterns with a smaller number
of points, the detection power of all the metrics decreases. This
is expected as clustering will not be manifested by a smaller
number of points so clearly as by a large number of points, and
thus is likely to be missed in the monitoring. Comparatively,
GSE is still the best one in terms of average performance in this
case.

2) Effect of type of nonuniformity.  Matern-cluster patterns and Type
II line patterns are more difficult to detect than the single-
cluster patterns and Type I line patterns. Intuitively, this is
Please cite this article in press as: Kam KM, et al. On assessing spatial uni
processes. J Manuf Syst (2012), http://dx.doi.org/10.1016/j.jmsy.2012.07.0

because the Matern-cluster patterns, which bear multiple clus-
ters, and the Type II line patterns, which contain multiple
line-shape clusters, have a wider spread within the study region
and thus are closer to CSR. This can be seen clearly from the plots
b); Group 3 (c)), distance-based metrics (d) and projection index (e).

in Fig. 4 where the Matern patterns and Type II line patterns are
very similar to CSR especially when the degree of nonuniformity
is weak.

(3) Effect of degree of nonuniformity.  In general, the higher the
degree of nonuniformity, the higher the detection power of the
metrics. When the degree of nonuniformity is very serious (e.g.,
at level L5), most of them exhibit satisfactory performance with
detection power over 90% even when the number of points is
small, while when the degree of nonuniformity is very weak
(i.e., at level L1), even the most powerful ones, e.g., GSE, do
not perform very well. In addition, there are several metrics
which show opposite trends under some scenarios, that is, their
detection power may  increase as the degree of nonuniformity
decreases. For example, in Fig. 5(b), the power of MI,  LMI  and GC
shows such a trend for Type I line patterns. A possible explana-
tion is that when the points form tight lines (i.e., at level L5), the
correlation among spatial neighbors is actually weak because
some neighbors may  have no points falling in it, and thus the
correlation measure will be low.

4.3.4. Effects of parameters of metrics
(1) Effect of q and D. Fig. 8 implies that the performance of most

metrics depends substantially on the value of their parame-
ters, i.e., the number of quadrats, q, for quadrat-based metrics,
and the maximum distance, D, for distance-based metrics. Thus,
these parameters need to be chosen appropriately to achieve
formity of particle distributions in quality control of manufacturing
18

good performance. Based on the simulation results, it is found
that the appropriate choices of q and D vary among metrics and
scenarios. Table 4 gives the settings of q or D that lead to the
highest detection power for the best metrics in each group. Note

dx.doi.org/10.1016/j.jmsy.2012.07.018
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Fig. 9. Average performance of the best metrics in each group (intensity = 30).

Table 4
Appropriate settings of parameters (q and D) for the best metrics in each group.

Name Intensity Single cluster Matern cluster 

L5 L4 L3 L2 L1 L5 L4 L3 L2 

ID
100 9 9 9 9 9 9 9 9 9 

30  9 9 9 9 9 9 9 9 9 

LG
100  49 49 49 49 49 49 49 49 49 

30  49 49 49 49 49 49 49 49 49 

GSE
100  9 9 9 9 9 9 9 9 9 

30  16 16 16 16 16 16 16 16 16 

L
100  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

30 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Degree of nonuniformity

up 2 (b); Group 3 (c)), and distance-based metrics (d).

that when more than one setting of the parameters yield the
highest detection power, the smallest setting is reported in the
table.

The results in Table 4 suggest that for ID and GSE, a small
number of quadrats, such as 9, is adequate to yield excellent
performance when the number of points in the pattern is large,
and a little larger value, such as 16, should be chosen when
the number of points is small. In fact, considering the robust-
ness of these two metrics as indicated in Fig. 8(a) and (c), the
setting of q will not have significant impact on their perfor-
mance. For LG, the appropriate choice of q varies dramatically
for different types of patterns. Since the type of an observed
pattern is unknown in quality monitoring, there will be some
formity of particle distributions in quality control of manufacturing
18

difficulty in specifying the value of q in using LG. For the L index
and g index, a large value of D should always be chosen, which
provides convenience in using these two metrics in practice.

Line pattern I Line pattern II

L1 L5 L4 L3 L2 L1 L5 L4 L3 L2 L1

9 9 9 9 9 9 9 9 9 9 9
9 16 16 16 16 16 25 25 25 25 25

49 9 9 9 9 9 9 9 9 9 9
49 49 49 49 49 49 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9
16 16 16 16 16 16 25 25 25 25 25

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

dx.doi.org/10.1016/j.jmsy.2012.07.018
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ig. 10. Comparison of the two methods for determining critical values: detection 

 index.

2) Effect of methods to determine critical value. It is found that the
metrics form three groups in terms of their performance under
the two methods to determine critical values: for ID, SI, GSE,
GLSE, LMI  and LG, the “fixed �” method always yields a higher
detection power, especially when the number of points in the
observed patterns is small. As an example, Fig. 10(a) shows
the detection powers of GSE (intensity of patterns = 30, single-
cluster patterns, q = 25) under these two methods. For the F
index and J index, the situation is opposite. Fig. 10(b) shows
the detection powers of F index under the two methods. For
the remaining, their performance under the “fixed �” method
and that under the “fixed n” method are similar.

To find more details on the difference of metrics in the first
two groups, their critical values for different values of n are
obtained, as shown in Fig. 10(c) and (d). According to Fig. 10(c),
the critical values of GSE determined by the two  methods bear
no considerable difference when the number of points in a pat-
tern is large (>50), whereas the critical values resulted from
the “fixed �” method are higher than those from the “fixed n”
method when the number of points is small, thus leading to
a higher detection power as shown in Fig. 10(a) by the lower-
sided decision rule used for GSE. For the F index, the critical
values resulted from the “fixed �” method are always lower
than those from the “fixed n” method, leading to a uniformly
lower detection power as shown in Fig. 10(b).

.4. Summary of results and general guidelines

The results of the numerical study provide the following
nswers to the concerns listed in Section 4.2:

(i) GSE is the best metric in terms of the average and best perfor-
mance over different parameter settings.

(ii) GSE is also the most robust metric to the specification of param-
eters.
Please cite this article in press as: Kam KM, et al. On assessing spatial uni
processes. J Manuf Syst (2012), http://dx.doi.org/10.1016/j.jmsy.2012.07.0

iii) The performance of these metrics is significantly affected by
the characteristics of the observed patterns. In general, a pat-
tern with a larger number of points will be detected with a
higher probability; multiple-cluster patterns are more difficult
 (a) and critical values (c) of GSE, and detection power (b) and critical values (d) of

to detect than single-cluster patterns; a pattern with a higher
degree of nonuniformity will be captured more easily.

(iv) The performance of these metrics is also significantly affected
by the specification of parameters. In general, appropriate
specifications vary from one metric to another and depend on
the characteristics of the observed patterns as well. The excep-
tions include ID and GSE whose performance is quite stable in
most cases, and the L index and g index for which a large value
of the parameter, D, is always preferred. The two methods to
determine critical values, “fixed �” and “fixed n”, lead to sim-
ilar performance for some metrics, and different performance
for others. For ID, SI, GSE, GLSE, LMI  and LG, the two  meth-
ods yield similar performance when the number of points in
the observed pattern is relatively large; otherwise the “fixed
�” method will produce a higher detection power. For the F
index and J index, the “fixed n” method always yields a better
performance.

Considering all the above aspects, the global Shannon entropy
measure will be recommended for uniformity monitoring. This metric
performs the best or among the best for all nonuniform pat-
terns considered in this study, and is most robust to parameter
specification. Such good features are not surprising since it is
well known that entropic measures are powerful in characteriz-
ing information contained in random variables. However, several
new findings regarding their performance are obtained in our
study: the global Shannon entropy measure works better than the
global–local entropy measure in uniformity monitoring; the global
entropy measure, which utilizes count information, performs bet-
ter than the distance-based metrics which rest on partial location
information; and the performance of the entropy measure is not
sensitive to the specification of the number of grids. These findings
will add to the general understanding of entropy measures.

To achieve the best performance when using the global Shannon
entropy measure in uniformity monitoring, the following general
guidelines are provided on the specification of its parameters: (1)
formity of particle distributions in quality control of manufacturing
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When the number of points in the observed pattern is large, a small
value can be specified for q; when the number of points is small,
choose a relatively large value for q. (2) When the number of points
is large, the “fixed n” method can be used to determine the critical

dx.doi.org/10.1016/j.jmsy.2012.07.018
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Fig. 11. SEM images in nanocomposite fabricat

alue since it is simpler than the “fixed �” method while yields
imilar performance; when the number of points is small, the “fixed
” method should be used; when the number of points is extremely
mall and the “fixed �” method fails, the “fixed n” method can be
sed as a substitute.

. Case study

To demonstrate the use and effectiveness of the metrics on uni-
ormity monitoring, they are applied to two sets of image data
rom manufacturing processes. The first set, as shown in the upper
anel of Fig. 11(a) and (b), is the SEM images from an ultrasonic-
ased aluminum nanocomposite fabrication process. Details of this
rocess can be found in Yang et al. [27] and Yang and Li [28].
his process uses ultrasonic waves to distribute nanoparticles in
rder to achieve uniform particle distribution, which is a novel
ay for MMNC  fabrication. The nanocomposite matrix used in

his study was made of 99.8% (weight) aluminum and 0.2% tita-
ium. To the alloy, 1% aluminum-oxide nanoparticles were added.
hese images have been used in the study of Zeng et al. [3] for
ssessing the boundary effect of the nanoparticles. The second set,
s shown in the upper panel of Fig. 11(c) and (d), is the SEM images
rom a tissue-engineered scaffolds fabrication process based on
rethaned-doped polyester elastomers (CUPEs). Details of this pro-
ess can be found in Dey et al. [29] and Yang et al. [30]. The CUPEs is

 novel class of biomaterial which has excellent materials proper-
ies to be used for fabricating scaffolds of soft tissues such as blood
essels and cardiac tissues. The white dots in the images are NIH
T3 fibroblast cells in the scaffold.
Please cite this article in press as: Kam KM, et al. On assessing spatial uni
processes. J Manuf Syst (2012), http://dx.doi.org/10.1016/j.jmsy.2012.07.0

Before applying the metrics, some image preprocessing proce-
ures are applied to grayscale SEM images to obtain point patterns
s shown in the lower panel of Fig. 11.  The preprocessing proce-
ures consist of three main steps: (1) converting grayscale images

able 5
alculated values of the global Shannon entropy measure.

n q = 9 q = 16 

C GSE C GSE 

(a) 72 0.95 0.61 0.94 0.70 

(b)  75 0.96 0.92 0.94 0.88 

(c) 77  0.79 0.98 0.74 0.95 

(d)  15 0.75 0.88 0.70 0.78 
) and (b)) and scaffold fabrication ((c) and (d)).

to binary images, (2) morphological operations for particle separa-
tion, and (3) identifying mass centers of particles. These procedures
have been extensively studied and numerous well-established
methods are readily available in the area of computer image analy-
sis. After preprocessing the SEM images, the particles in the images
are denoted by their mass centers, and then they can be modeled as
spatial point patterns. The calculated values of the global Shannon
entropy measure are given in Table 5, where the critical value, C, of
image (a), (b) and (c) is determined by the “fixed �” method with

 ̨ = 0.05, and that of image (d) is determined by the “fixed n” method
due to the small number of points in that image. A lower-sided
decision rule is used here, which means that values of this metric
smaller than the critical value will be concluded to be nonuniform.

Since image (a)–(c) contains a relatively large number of points,
results under q = 9 is reliable enough. Image (d) contains a small
number of points, so results under q = 36 and 49 will be used.
Between the images from the nanocomposite fabrication process,
(a) represents a case of serious nonuniformity, while (b) represents
a case of weak nonuniformity. Consistent with this, the correspond-
ing GSE value of (a) is considerably smaller than the critical value,
and that of (b) is slightly smaller than the critical value. Between
the images from the scaffold fabrication process, (c) is quite uni-
form, and this is validated by the corresponding GSE value which is
much larger than the critical value. Image (d) exhibits weak nonuni-
formity, but the corresponding value of GSE is a little larger than
the critical value, meaning that the nonuniformity is not captured.
According to the numerical study, this is understandable since the
number of points in the pattern is so small.
formity of particle distributions in quality control of manufacturing
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6. Summary

The need for assessing spatial uniformity of particle distri-
butions widely exists in quality control of many manufacturing

q = 25 q = 36 q = 49

C GSE C GSE C GSE

0.92 0.67 0.90 0.72 0.88 0.70
0.92 0.87 0.90 0.86 0.88 0.82
0.69 0.94 0.65 0.91 0.62 0.91
0.66 0.74 0.62 0.70 0.59 0.65

dx.doi.org/10.1016/j.jmsy.2012.07.018
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rocesses such as the fabrication of nanomaterials and biomate-
ials. The existing uniformity metrics that have been developed
n many other areas can be applied for this purpose. This study
ompares the performance of existing metrics in detecting typ-
cal nonuniform particle distributions that commonly exist in

anufacturing processes through simulation. It is found that the
erformance of these metrics depends significantly on the charac-
eristics of the observed patterns as well as the parameters of these

etrics. The global Shannon entropy measure performs the best
or the given nonuniform distributions in terms of its average and
est detection power over different parameter settings and robust-
ess to parameter specification. Guidelines on the use of this metric
re also provided. In a case study, this metric is applied to image
ata from two emerging manufacturing processes, nanocomposite
abrication and tissue-engineered scaffold fabrication processes, to
emonstrate its use. The results validate the effectiveness of this
etric.
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ppendix A. Procedure to calculate the projection index

This index is developed based on projecting coordinates of
oints onto a rotating axis as illustrated in Fig. A1,  with a coor-
inate system established at the center of the study region. The
alue of the projection index will be obtained following the steps
elow:

Step 1: Rotate the x axis counterclockwise by �, where � = 0◦, 1◦,
. . .,  179◦. Project all points (xi, yi) in the observed pattern onto the
axis and obtain the projected coordinates by

xi,� = xi cos � + yi sin � i = 1, . . . , n

Step 2: Denote vi,� as the distance between each pair of adjacent
points in xi,� . Calculate the squared coefficient of variation for vi,�

SCV� =
(

sv,�

�v,�

)2

where sv,� and �v,� are sample standard deviation and mean of vi,� ,
respectively.
Step 3: Calculate all the 180 SCV� at different angles and obtain the
index as(∑ ◦ )
Please cite this article in press as: Kam KM, et al. On assessing spatial uni
processes. J Manuf Syst (2012), http://dx.doi.org/10.1016/j.jmsy.2012.07.0

PI =
179
�=0◦ SCV�

180

x
),( ii yx

,ix

Fig. A1. Rotating axis.

[

[
[
[

[

[

[

[

[
[

 PRESS
ing Systems xxx (2012) xxx– xxx

Appendix B. Procedure to generate the patterns in Fig. 4

(1) Single-cluster patterns. These patterns are generated by the
superimposition of two  point patterns: a Poisson distribution
with a high intensity generated within an ellipse at the cen-
ter of the study region, and a Poisson distribution with a low
intensity generated in the entire study region. Given the aver-
age intensity (100 or 30 in the numerical study), p% of the points
is generated randomly within the ellipse in the center, while
the remaining (100 − p)% points are generated within the entire
region. 5 levels of p are considered in the simulations: 80(L5),
70(L4), 60(L3), 50(L2), 40(L1).

(2) Matern-cluster patterns. These patterns are generated through
two  steps: first, a Poisson distribution of parent points is gen-
erated with intensity �1, and then each parent point is replaced
by a random cluster of points of intensity �2, within radius rM

of the parent point. In the simulations, �1 = �2 = 10, and 5 levels
of rM are considered: 0.05(L5), 0.1(L4), 0.2(L3), 0.3(L2), 0.4(L1).

(3) Line patterns. These patterns are generated through two steps:
first, points following a Poisson distribution are generated on
the line segments, and then each point is randomly jittered
within a disc of radius rl centered at its original location. 5 levels
of rl are considered for both the Type I and Type II line patterns:
0.02(L5), 0.05(L4), 0.1(L3), 0.15(L2), 0.2(L1).
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